Skip to main content
Log in

Results of Targeted Sequencing of PRL, PRLR, and PRLHR Genes in Young Women with Nonneoplastic Hyperprolactinemia

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The goal of the study was exploring the range of variants of the PRL, PRLR, and PRLHR genes in women of reproductive age with nontumor hyperprolactinemia. In women with hyperprolactinemia of nontumor origin (n = 15) targeted high throughput sequencing of PRL, PRLR, and PRLHR genes was performed. The targeted panel of genes included coding regions and adjacent splicing sites. Analysis of the PRL, PRLR, and PRLHR genes revealed a number of rare and common variants. In the PRL gene, the common variant rs1205955 was identified (MAF А = 0.279). For the PRLR gene, the rare variant rs185353023 was identified in the 3'UTR (MAF A/C = 0.003) and 12 common variants were detected. For the PRLHR gene, ten common variants were identified. The maximum number of variants was localized in the 3'UTR region and introns. For the first time in Russia, targeted high throughput sequencing of the PRL, PRLR, and PRLHR genes was performed, according to the results of which no obvious pathological variants were revealed in the studied genes in women with an increased content of nonneoplastic prolactin. The discovered polymorphism in these genes allows further study of its association with impaired function of the prolactin component of hormonal regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abe, T., Koga, N., Tomita, M., Tonoike, T., Kushima, M., Takahashi, K., Sano, Y., and Taniyama, M., Cellular localization of prolactin-releasing peptide receptors in the human pituitary, Acta Neuropathol., 2003, vol. 106, p. 495. https://doi.org/10.1007/s00401-003-0753-7

    Article  CAS  PubMed  Google Scholar 

  2. Abramicheva, P. A. and Smirnova, O. V., Prolactin receptor isoforms as the basis of tissue-specific action of prolactin in the norm and pathology, Biochemistry (Moscow), 2019, vol. 84, p. 329. https://doi.org/10.1134/S0006297919040011

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Jonathan, N., LaPensee, C. R., and LaPensee, E. W., What can we learn from rodents about prolactin in humans?, Endocrinol. Rev., 2008, vol. 29, p. 1. https://doi.org/10.1210/er.2007-0017

    Article  CAS  Google Scholar 

  4. Bernard, V., Young, J., and Binart, N., Prolactin—a pleiotropic factor in health and disease, Nat. Rev. Endocrinol., 2019, vol. 15, p. 356. https://doi.org/10.1038/s41574-019-0194-6

    Article  CAS  PubMed  Google Scholar 

  5. Bernard, V., Young, J., Chanson, P., and Binart, N., New insights in prolactin: pathological implications, Nat. Rev. Endocrinol., 2015, vol. 11, p. 265. https://doi.org/10.1038/nrendo.2015.36

    Article  CAS  PubMed  Google Scholar 

  6. Birla, S., Khadgawat, R., Jyotsna, V.P., Jain, V., Garg, M.K., Bhalla, A. S., and Sharma, A., Identification of novel PROP1 and POU1F1 mutations in patients with combined pituitary hormone deficiency, Horm. Metab. Res., 2016, vol. 48, p. 822. https://doi.org/10.1055/s-0042-117112

    Article  CAS  PubMed  Google Scholar 

  7. Carlomagno, Y., Salerno, M., Vivenza, D., Capalbo, D., Godi, M., Mellone, S., Tiradani, L., Corneli, G., Momigliano-Richiardi, P., Bona, G., and Giordano, M., A novel recessive splicing mutation in the POU1F1 gene causing combined pituitary hormone deficiency, J. Endocrinol. Invest., 2009, vol. 32, p. 653. https://doi.org/10.1007/bf03345736

    Article  CAS  PubMed  Google Scholar 

  8. Chang, S. and Copperman, A.B., New insights into human prolactin pathophysiology: genomics and beyond, Curr. Opin. Obstet. Gynecol., 2019, vol. 31, p. 207. https://doi.org/10.1097/GCO.0000000000000545

    Article  PubMed  Google Scholar 

  9. Grattan, D.R., 60 years of neuroendocrinology: the hypothalamo–prolactin axis, J. Endocrinol., 2015, vol. 226, p. 101. https://doi.org/10.1530/JOE-15-0213

    Article  CAS  Google Scholar 

  10. Gu, W., Geddes, B.J., Zhang, C.P., Foley, K.P., and Stricker-Krongrad, A., The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice, J. Mol. Neurosci., 2004, vol.22, p. 93. https://doi.org/10.1385/JMN:22:1-2:93

    Article  PubMed  Google Scholar 

  11. Hernández-Bello, J., Palafox-Sanchez, C. A., García-Arellano, S., Reyes-Castillo, Z., Pereira-Suárez, A. L., Parra-Rojas, I., Navarro-Zarza, J. E., de la Cruz-Mosso, U., Torres-Carrillo, N. M., and Muñoz-Valle, J.,F., Association of extrapituitary prolactin promoter polymorphism with disease susceptibility and anti-RNP antibodies in Mexican patients with systemic lupus erythematosus, Arch. Med. Sci., 2018, vol. 14, p. 1025. https://doi.org/10.5114/aoms.2016.62138

    Article  CAS  PubMed  Google Scholar 

  12. Hu, Z., Zhuang, L., Meng, J., Tsai-Morris, C., and Dufau, M.L., Complex 5' genomic structure of the human prolactin receptor: multiple alternative exons 1 and promoter utilization, Endocrinology, 2002, vol. 143, p. 2139.

    Article  CAS  PubMed  Google Scholar 

  13. Ivanova, S.A., Osmanova, D.Z., Boiko, A.S., Pozhi-daev, I.V., Freidin, M.B., Fedorenko, O.Y., Semke, A.V., Bokhan, N.A., Kornetova, E.G., Rakhmazova, L.D., Wilffert, B., and Loonen, A.J., Schizophr Prolactin gene polymorphism (–1149 G/T) is associated with hyperprolactinemia in patients with schizophrenia treated with antipsychotics, Schizophr. Res., 2017, vol. 182, p.110. https://doi.org/10.1016/j.schres.2016.10.029

    Article  PubMed  Google Scholar 

  14. Kavarthapu, R. and Dufau, M.L., Essential role of endogenous prolactin and CDK7 in estrogen-induced upregulation of the prolactin receptor in breast cancer cells, Oncotarget, 2017, vol. 8, p. 27353. https://doi.org/10.18632/oncotarget.16040

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi, T., Usui, H., Tanaka, H., and Shozu, M., Variant Pprolactin receptor in agalactia and hyperprolactinemia, N. Engl. J. Med., 2018, vol. 379, p. 2230. https://doi.org/10.1056/NEJMoa1805171

    Article  CAS  PubMed  Google Scholar 

  16. Landrum, M.J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., and Maglott, D. R., ClinVar: improving access to variant interpretations and supporting evidence, Nucleic. Acids Res. 2018, vol. 46(D1), p. 1062. https://doi.org/10.1093/nar/gkx1153

    Article  CAS  Google Scholar 

  17. Mel’nichenko, G.A., Dzeranova, L.K., Pigarova, E.A., Vorotnikova, S.Yu., Rozhinskaya, L.Ya., and Dedov, I.I., Federal clinical guidelines on the clinic, diagnosis, differential diagnosis and treatment of hyperprolactinemia, Probl. Endocrinol., 2013, vol.59, p. 19.

    Article  Google Scholar 

  18. Newey, P. J., Gorvin, C. M., Cleland, S. J., Willberg, C. B., Bridge, M., Azharuddin, M., Drummond, R. S., van der Merwe, P. A., Klenerman, P., Bountra, C., and Thakker, R.V., Mutant prolactin receptor and familial hyperprolactinemia. N. Engl. J. Med., 2013, vol. 369, p. 2012. https://doi.org/10.1056/NEJMoa1307557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikitin, Yu.P., Rymar, O.D., Maksimov, V.N., Simonova, G.I., Mustafina, S.V., Shcherbakova, L.V., Zankina, M.A., Chernova, N.N., and Voevoda, M.I., Association of PTPN22 haplotypes with Hashimoto’s thyroiditis in population of Novosibirsk, Klin. Eksp. Tireoidol., 2009, vol. 5, p. 47.

    Google Scholar 

  20. Rainbow, L. A., Rees, S. A., Shaikh, M. G., Shaw, N. J., Cole, T., Barrett, T. G., and Kirk, J. M., Mutation analysis of POUF-1, PROP-1 and HESX-1 show low frequency of mutations in children with sporadic forms of combined pituitary hormone deficiency and septo-optic dysplasia, Clin. Endocrinol. (Oxf)., 2005, vol. 62, p. 163. https://doi.org/10.1111/j.1365-2265.2004.02189.x

    Article  CAS  Google Scholar 

  21. Reynaud, R., Gueydan, M., Saveanu, A., Vallette-Kasic, S., Enjalbert, A., Brue, T., and Barlier, A., Genetic screening of combined pituitary hormone deficiency: experience in 195 patients, J. Clin. Endocrinol. Metab., 2006, vol. 91, p. 3329. https://doi.org/10.1210/jc.2005-2173

    Article  CAS  PubMed  Google Scholar 

  22. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde M., Lyon E., …, ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genet Med., 2015, vol.17, p. 405. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rymar, O.D., Mikitinskaya, A.K., Maksimov, V.N., and Mustafina, S.V., The role of the genetic factors in the etiology of autoimmune thyroid disease, Sib. Med. Zh. (Tomsk), 2011, vol. 26, p. 35.

    Google Scholar 

  24. Sambrook, J. and Russell, D. W., Purification of nucleic acids by extraction with phenol:chloroform, CSH Protoc., 2006, vol. 2006, p. pdb.prot4455. https://doi.org/10.1101/pdb.prot4455

  25. Stenson, P.D., Ball, E.V., Mort, M.E., Phillips, A.D., Shiel, J.A., Thomas, N.S., Abeysinghe, S.S., Krawczak, M., and Cooper, D.N., Human gene mutation database (HGMD®): 2003 update, Hum. Mutat., 2003, vol. 21, p. 577. https://doi.org/10.1002/HUMU.10212

    Article  CAS  PubMed  Google Scholar 

  26. Tachibana, T. and Sakamoto, T., Functions of two distinct “prolactin-releasing peptides” evolved from a common ancestral gene, Front. Endocrinol. (Lausanne), 2014, vol. 5, p. 170. https://doi.org/10.3389/fendo.2014.00170

    Article  Google Scholar 

  27. Voevoda, M.I., Ivanova, A.A., Shakhtshneider, E.V., Ovsyannikova, A.K., Mikhailova, S.V., Astrakova, K.S., Voevoda, S.M., and Rymar, O.D., Molecular genetics of maturity-onset diabetes of the young, Ter. Arkh., 2016, vol. 88, p. 117. https://doi.org/10.17116/terarkh2016884117-124

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of a state order to the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (reg. no. 122031700094-5 “Epidemiological Monitoring of the Health Status of the Population and the Study of Molecular-Genetic and Molecular-Biological Mechanisms for the Development of Common Therapeutic Diseases in Siberia to Improve diagnosis, Prevention, and Treatment”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Voevoda.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study. The study was approved by the local ethics committee of the Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, protocol no. 10 dated February 25, 2014. All examined patients signed an informed consent.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhtshneider, E.V., Ivanoshchuk, D.E., Voevoda, S.M. et al. Results of Targeted Sequencing of PRL, PRLR, and PRLHR Genes in Young Women with Nonneoplastic Hyperprolactinemia. Cell Tiss. Biol. 17, 292–298 (2023). https://doi.org/10.1134/S1990519X23030124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23030124

Keywords:

Navigation