Skip to main content
Log in

Neuronal NO Synthase in the Pathogenesis of Metabolic Syndrome

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In recent years, metabolic syndrome (MS), which is characterized by obesity, hypertension, dyslipidemia, and insulin resistance, has become an epidemic. Therefore, the study of the molecular mechanisms underlying the development of MS and its complications, as well as the search for new therapeutic agents for their treatment, is one of the most acute problems of modern endocrinology. In recent years, convincing evidence was obtained that functional changes in the expression, activity, and regulatory properties of neuronal NO synthase (nNOS), which catalyzes the formation of the essential secondary messenger (nitric oxide, NO), and the NO/cGMP-signaling pathways in the brain, myocardium, and skeletal muscles that depend upon it play a key role among molecular causes of MS. In the brain, nNOS is associated with NMDA receptors, hyperactivation of which in MS is accompanied by excessive nNOS stimulation and hyperproduction of NO, which leads to NO-induced damage of neurons and violation of the central regulation of physiological processes and neurodegeneration. In the myocardium, changes in the expression and localization of nNOS, as well as its functional interaction with cytoskeletal proteins, are noted in MS; this leads to disturbances in myocardial contraction and hypertrophy. In the skeletal muscles, nNOS controls their contraction and oxidative metabolism and is involved in the regulation of vascular relaxation, as well as in the regulation of glucose transport. A decrease in the expression and activity of nNOS, as well as dysregulation of its activity in MS, causes disturbances in these processes, making a significant contribution to the development of insulin resistance and deterioration of glucose homeostasis. Thus, nNOS can be considered an important therapeutic target in the treatment of MS and other metabolic disorders, as well as for preventing complications in the nervous and cardiovascular systems and locomotor apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Ahlawat, A., Rana, A., Goyal, N., and Sharma, S., Potential role of nitric oxide synthase isoforms in pathophysiology of neuropathic pain, Inflammopharmacology, 2014, vol. 22, no. 5, pp. 269–278. https://doi.org/10.1007/s10787-014-0213-0

    Article  CAS  PubMed  Google Scholar 

  2. Ahluwalia, A., The noncanonical pathway for in vivo nitric oxide generation: the nitrate-nitrite-nitric oxide pathway, Pharmacol. Rev., 2020, vol. 72, no. 3, pp. 692–766. https://doi.org/10.1124/pr.120.019240

    Article  CAS  PubMed  Google Scholar 

  3. Alderton, W.K., Cooper, C.E., and Knowles, R.G., Nitric oxide synthases: structure, function and inhibition, Biochem. J., 2001, vol. 357, pp. 593–615. https://doi.org/10.1042/0264-6021:3570593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ally, A., Powell, I., Ally, M.M., Chaitoff, K., and Nauli, S., Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states, Nitric Oxide, 2020, vol. 102, pp. 52–73. https://doi.org/10.1016/j.niox.2020.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Araki, S., Osuka, K., Takata, T., Tsuchiya, T., and Watanabe, Y., Coordination between calcium/calmodulin-dependent protein kinase II and neuronal nitric oxide synthase in neurons, Int. J. Mol. Sci., 2020, vol. 21, no. 21, p. 7997. https://doi.org/10.3390/ijms21217997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashley, E.A., Sears, C.E., Bryant, S.M., Watkins, H.C., and Casadei, B., Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes, Circulation, 2002, vol. 105, pp. 3011–3016. https://doi.org/10.1161/01.cir.0000019516.31040.2d

    Article  CAS  PubMed  Google Scholar 

  7. Assumpção, C.R., Brunini, T.M.C., Matsuura, C., Resende, A.C., and Mendes-Ribeiro, A.C., Impact of the L-arginine-nitric oxide pathway and oxidative stress on the pathogenesis of the metabolic syndrome, Open Biochem. J., 2008, vol. 2, pp. 108–115. https://doi.org/10.2174/1874091X00802010108

    Article  CAS  PubMed Central  Google Scholar 

  8. Baldelli, S., Barbato, L.D., Tatulli, G., Aquilano, K., and Ciriolo, M.R., The role of nNOS and PGC-1α in skeletal muscle cells. J. Cell Sci. 2014, vol. 127, part. 22, pp. 4813–4820. https://doi.org/10.1242/jcs.154229

    Article  CAS  PubMed  Google Scholar 

  9. Balke, J.E., Zhang, L., and Percival, J.M., Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle, Nitric Oxide, 2019, vol. 82, pp. 35–47. https://doi.org/10.1016/j.niox.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  10. Barouch, L.A., Harrison, R.W., Skaf, M.W., Rosas, G.O., Cappola, T.P., Robeissi, Z.A., Hobai, I.A., Lemmon, C.A., Burnett, A.L., O`Rourke, B., …, and Hare, J. M., Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms, Nature, 2002, vol. 416, pp. 337–339. https://doi.org/10.1038/416337a

    Article  CAS  PubMed  Google Scholar 

  11. Cao, J., Viholainen, J.I., Dart, C., Warwick, H.K., Leyland, M.L., and Courtney, M.J., The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death, J. Cell Biol., 2005, vol. 168, pp. 117–126. https://doi.org/10.1083/jcb.200407024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carnicer, R., Crabtree, M.J., Sivakumaran, V., Casadei, B., and Kass, D.A., Nitric oxide synthases in heart failure, Antioxid. Redox. Signal., 2013, vol. 18, no. 9, pp. 1078–1099. https://doi.org/10.1089/ars.2012.4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colas, D., Gharib, A., Bezin, L., Morales, A., Guidon, G., Cespuglio, R., and Sarda, N., Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain, BMC Neurosci., 2006, vol. 7, p. 81. https://doi.org/10.1186/1471-2202-7-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collin, F., Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases, Int. J. Mol. Sci., 2019, vol. 20, p. 2407. https://doi.org/10.3390/ijms20102407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cossenza, M., Socodato, R., Portugal, C.C., Do-mith, I.C.L., Gladulich, L.F.H., Encarnacao, T.G., Calaza, K.C., Mendoca, H.R., Campello-Costa, P., and Paer-de-Carvalho, R., Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects, Vita-m. Horm., 2014, vol. 96, pp. 79–125. https://doi.org/10.1016/B978-0-12-800254-4.00005-2

    Article  CAS  Google Scholar 

  16. Costa, E.D., Rezende, B.A., Cortes, S.F., and Lemos, V.S., Neuronal nitric oxide synthase in vascular physiology and diseases, Front. Physiol., 2016, vol. 7, p. 206. https://doi.org/10.3389/FPHYS.2016.00206

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dawson, D., Lygate, C.A., Zhang, M.H., Hulber, K., Neubauer, S., and Casadei, B., nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction, Circulation, 2005, vol. 112, pp. 3729–3737. https://doi.org/10.1161/CIRCULATIONAHA.105.539437

    Article  CAS  PubMed  Google Scholar 

  18. Dineen, S.L., McKenney, M.L., Bell, L.N., Ful-lenkamp, A.M., Schultz, K.A., Allosh, M., Chalasani, N., and Sturek, M., Metabolic syndrome abolishes glucagon-like peptide 1 receptor agonist stimulation of SERCA in coronary smooth muscle, Diabetes, 2015, vol. 64, pp. 3321–3327. https://doi.org/10.2337/db14-1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eghbalzadeh, K., Brixius, K., Bloch, W., and Brinkmann, C., Skeletal muscle nitric oxide (NO) synthases and NO-signaling in “diabesity”—what about the relevance of exercise training interventions?, Nitric Oxide, 2014, vol. 37, pp. 28–40. https://doi.org/10.1016/j.niox.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  20. Fadel, P.J., Nitric oxide and cardiovascular regulation: beyond the endothelium, Hypertension, 2017, vol. 69, pp. 778–779. https://doi.org/10.1161/HYPERTENSIONAHA.117.08999

    Article  CAS  PubMed  Google Scholar 

  21. Forstermann, U. and Sessa, W.C., Nitric oxide synthases: regulation and function, Eur. Heart J., 2012, vol. 33, no. 7, pp. 829–837. https://doi.org/10.1093/eurheartj/ehr304

    Article  CAS  PubMed  Google Scholar 

  22. Forstermann, U., Xia, N., and Li, H., Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis, Circ. Res., 2017, vol. 120, pp. 713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326

    Article  CAS  PubMed  Google Scholar 

  23. Fridolfsson, H.N. and Patel, H.H., Caveolin and caveolae in age associated cardiovascular disease, J. Geriatr. Cardiol., 2013, vol. 10, pp. 66–74. https://doi.org/10.3969/j.issn.1671-5411.2013.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gantner, B.N., LaFond, K.M., and Bonini, M.G., Nitric oxide in cellular adaptation and disease, Redox Biol., 2020, vol. 34, p. 101550. https://doi.org/10.1016/j.redox.2020.101550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghosh, A. and Giese, K.P., Calcium/calmodulin-dependent kinase II and Alzheimer’s disease, Mol. Brain, 2015, vol. 8, p. 78. https://doi.org/10.1186/s13041-015-0166-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez, D.R., Beigi, F., Treuer, A.V., and Hare, J.M., Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 20612–20617. https://doi.org/10.1073/pnas.0706796104

    Article  PubMed  PubMed Central  Google Scholar 

  27. Greenwood, M.T., Guo, Y., Kumar, U., Beausejours, S., and Hussain, S.N., Distribution of protein inhibitor of neuronal nitric oxide synthase in rat brain, Biochem. Biophys. Res. Commun., 1997, vol. 238, no. 2, pp. 617–621. https://doi.org/10.1006/bbrc.1997.7361

    Article  CAS  PubMed  Google Scholar 

  28. Grundy, S.M., Metabolic syndrome: a multiplex cardiovascular risk factor, J. Clin. Endocrinol. Metab., 2007, vol. 92, pp. 399–404. https://doi.org/10.1210/j.c.2006-0513

    Article  CAS  PubMed  Google Scholar 

  29. Hashim, K.N., Chin, K.Y., and Ahmad, F., The mechanism of honey in reversing metabolic syndrome, Molecules, 2021, vol. 26, no. 4, p. 808. https://doi.org/10.3390/molecules26040808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heinrich, T.A., da Silva, R.S., Miranda, K.M., Switzer, C.H., Wink, D.A., and Fukuto, J.M., Biological nitric oxide signalling: chemistry and terminology, Br. J. Pharmacol., 2013, vol. 169, pp. 1417–1429. https://doi.org/10.1111/bph.12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herring, N. and Paterson, D.J., Neuromodulators of peripheral cardiac sympatho-vagal balance, Exp. Physiol., 2009, vol. 94, pp. 46–53. https://doi.org/10.1113/expphysiol.2008.044776

    Article  CAS  PubMed  Google Scholar 

  32. Hinchee-Rodriguez, K., Garg, N., Venkatakrishnan, P., Roman, M.G., Adamo, M.L., Masters, B.S., and Romam, L.J., Neuronal nitric oxide synthase is phosphorylated in response to insulin stimulation in skeletal muscle, Biochem. Biophys. Res. Commun., 2013, vol. 435, no. 3, pp. 501–505. https://doi.org/10.1016/j.bbrc.2013.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirai, D.M., Copp, S.W., Ferguson, S.K., Holds-worth, C.T., Hageman, K.S., Poole, D.C., and Musch, T.I., Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure, Nitric Oxide, 2013, vol. 74, pp. 1–9. https://doi.org/10.1016/j.niox.2017.12.008

    Article  CAS  Google Scholar 

  34. Jaffrey, S.R. and Snyder, S.H., PIN: an associated protein inhibitor of neuronal nitric oxide synthase, Science, 1996, vol. 274, pp. 774–777. https://doi.org/ .274.5288.774https://doi.org/10.1126/science

  35. Jian, Z., Han, H., Zhang, T., Puglisi, J, Izu, L.T., Onafiok, E., Erickson, J.R., Chen, Y.-J., Horvath, B., Shimkunas, R., … and Chen-Izu, Y., Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling, Sci. Signal., 2014, vol. 7, p. 27. https://doi.org/10.1126/scisignal.2005046

    Article  CAS  Google Scholar 

  36. Johnson, E.K., Zhang, L., Adams, M.E., Phillips, A., Freitas, M.A., Froehner, S.C., Green-Church, K.B., and Montanazo, F., Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins, PLoS One, 2012, vol. 7, no. 8, p. e43515. https://doi.org/10.1371/journal.pone.0043515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jung, J., Na, C., and Huh, Y., Alterations in nitric oxide synthase in the aged CNS, Oxid. Med. Cell Longev., 2012, vol. 2012, p. 718976. https://doi.org/10.1155/2012/718976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kapil, V., Khambata, R.S., Jones, D.A., Rathod, K., Primus, C., Massimo, G., Fukuto, J.M., Ahluwalia, A., The noncanonical pathway for in vivo nitric oxide generation: the nitrate-nitrite-nitric oxide pathway. Pharmacol Rev., 2020, vol. 72, no. 3, pp. 692–766. https://doi.org/10.1124/pr.120.019240

  39. Kaur, J., A comprehensive review on metabolic syndrome, Cardiol. Res. Pract., 2014, p. 943162. https://doi.org/10.1155/2014/943162

  40. Kayki-Mutlu, G. and Kochm, W.J., Nitric oxide and S-nitrosylation in cardiac regulation: G protein-coupled receptor kinase-2 and β-arrestins as targets, Int. J. Mol. Sci., 2021, vol. 22, no. 2, p. 521. https://doi.org/10.3390/ijms22020521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kellogg, D.L., McCammon, K.M., Hinchee-Rodriguez, K.S., Adamo, M.L., and Roman, L.J., Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes, Free Radical Biol. Med., 2017, vol. 110, pp. 261–269. https://doi.org/10.1016/j.freeradbiomed.2017.06.018

    Article  CAS  Google Scholar 

  42. Khan, S.A., Lee, K., Minhas, K.M., Gonzalez, D.R., Raju, S.V.Y., Tejani, A.D., Li, D., Berkowitz, D.E., and Hare, J.M., Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 15944–15948. https://doi.org/10.1073/pnas.0404136101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuznetsova, L.A., Metabolic syndrome: influence of adipokines on L-arginine-NO-synthase-NO signaling pathway, Acta Biomed. Sci., 2021, vol. 6, no. 2, pp. 22–40. https://doi.org/10.2941/ABC.2021-.6.2.3

    Article  Google Scholar 

  44. Lai, Y., Zhao, J., Yue, Y., and Duan, D., α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the α1 helix of dystrophin R17 for neuronal NOS binding, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 525–530. https://doi.org/10.1016/pnas.1211431109

    Article  CAS  PubMed  Google Scholar 

  45. Lane, P. and Gross, S.S., The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity, Acta Physiol. Scand., 2000, vol. 168, pp. 53–63. https://doi.org/10.1046/j.1365-201x.2000.00654.x

    Article  CAS  PubMed  Google Scholar 

  46. Lee, Y., Chakraborty, S., and Muthuchamy, M., Roles of sarcoplasmic reticulum Ca2+ ATPase pump in the impairments of lymphatic contractile activity in a metabolic syndrome rat model, Sci. Rep., 2020, vol. 10, p. 12320. https://doi.org/10.1038/s41598-020-69196-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lemieux, I. and Despres, J.P., Metabolic syndrome: past, present and future, Nutrients, 2020, vol. 12, no. 11, p. 3501. https://doi.org/10.3390/nu12113501

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, F.C., Chan, J.Y., Chan, S.H., and Chang, A.Y., In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade, Mol. Pharmacol., 2005, vol. 68, pp. 179–192. https://doi.org/10.1124/mol.105.011684

    Article  CAS  PubMed  Google Scholar 

  49. Llevenes, P., Rodriges-Diez, R., Cros-Brunso, L., Prieto, M.I., Casani, L., Balfagon, G., and Blanco-Rivero, J., Beneficial effect of a multistrain synbiotic prodefen plus on the systemic and vascular alterations associated with metabolic syndrome in rats: the role of the neuronal nitric oxide synthase and protein kinase A, Nutrients, 2020, vol. 12, no. 1, p. 117. https://doi.org/10.3390/nu12010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lundberg Lundberg, J.O., Gladwin, M.T., Shiva, S., Ahluwalia, A., Webb, A.J., Benjamin, N., Bryan, N.S., Butler, A., Cabrales, P., Fago, A., …, and Weitzberg, E., Nitrate and nitrite in biology, nutrition and therapeutics, Nat. Chem. Biol., 2009, vol. 5, no. 12, pp. 865–869. https://doi.org/10.1038/nchembio.260

    Article  CAS  PubMed  Google Scholar 

  51. Maccallini, C. and Amoroso, R., Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders, Neural. Regen. Res., 2016, vol. 11, no. 11, pp. 1731–1734. https://doi.org/10.4103/1673-5374.194707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martínez, M.C. and Andriantsitohaina, R., Reactive nitrogen species: molecular mechanisms and potential significance in health and disease, Antioxid. Redox Signal., 2008, vol. 11, pp. 669–702. https://doi.org/10.1089/ars.2007.1993

    Article  CAS  Google Scholar 

  53. Matheny, R.W. and Adamo, M.L., Current perspectives on Akt Akt-ivation and Akt-ions, Exp. Biol. Med. (Maywood), 2009, vol. 234, no. 11, pp. 1264–1270. https://doi.org/10.3181/0904-MR-138

    Article  CAS  Google Scholar 

  54. Meinen, S., Lin, S., Ruegg, M.A., and Punda, A.R., Fatigue and muscle atrophy in a mouse model of myasthenia gravis is paralleled by loss of sarcolemmal nNOS, PLoS One, 2012, vol. 7, p. e44148. https://doi.org/10.1371/journal.pone.0044148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Melikian, N., Seddon, M.D., Casadei, B., Chowienczyk, P.J., and Shah, A.M., Neuronal nitric oxide synthase and human vascular regulation, Trends Cardiovasc. Med., 2009, vol. 19, pp. 256–262. https://doi.org/10.1016/j.tcm.2010.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mendrick, D.L., Diehl, A.M., Topor, L.S., Dietert, R.R., Will, Y., La Merrill, M.A., Bouret, S., Varma, V., Hastings, K.L., Schug, T.T., Hart S.G.E., Burlesson F.G. Metabolic syndrome and associated diseases: from the bench to the clinic, Toxicol. Sci., 2018, vol. 162, no. 1, pp. 36–42. https://doi.org/10.1093/toxsci/kfx233

    Article  CAS  PubMed  Google Scholar 

  57. Menschikova, E.B., Zenkov, N.K., and Reutov, V.P., Nitric oxide and NO-synthases in mammals in different functional states, Biochemistry (Moscow), 2000, vol. 65, no. 4, pp. 409–426.

    Google Scholar 

  58. Napp, A., Brixius, K., Pott, C., Ziskoven, C, Boelck, B., Mehlhorn, U., Schwinger, R.H.G., and Bloch, W., Effects of the beta3-adrenergic agonist BRL 37344 on endothelial nitric oxide synthase phosphorylation and force of contraction in human failing myocardium, J. Card. Fail., 2009, vol. 15, pp. 57–67. https://doi.org/10.1016/j.cardfail.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  59. Niu, X., Watts, V.L., Cingolani, O.H., Sivakumaran, V., Leyton-Mange, J.S., Ellis, C.L., Miller, K.L., Vandegaer, K., Bedja, D., Gabrielson, K.I., …, and Barouch, L.A., Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase, J. Am. Coll. Cardiol., 2012, vol. 59, no. 22, pp. 1979–1987. https://doi.org/10.1016/j.jacc.2011.12.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Niu, X., Zhao, L., Li, X, Xue, Y., Wang, B., Lv, Z., Chen, J., Sun, D., and Zheng, Q., β3-Adrenoreceptor stimulation protects against myocardial infarction injury via eNOS and nNOS activation, PLoS One, 2014, vol. 9, no. 6, p. e98713. https://doi.org/. Pone.0098713https://doi.org/10.1371/journal

  61. Oceandy, D., Cartwright, E.J., Emerson, M., Prehar, S., Baudoin, F.M., Zi, M., Alawi, N., Venetucci, L., Schuh, K., Williams, J.C., Armesilla, A.L., and Neyses, L., Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b, Circulation, 2007, vol. 115, pp. 483–492. https://doi.org/10.1161/CIRCULATIONAHA.106.643791

    Article  CAS  PubMed  Google Scholar 

  62. Piech, A., Dessy, C., Havaux, X., Feron, O., and Balligand, J.L., Differential regulation of nitric oxide synthases and their allosteric regulators in heart and vessels of hypertensive rats, Cardiovasc. Res., 2003, vol. 57, pp. 456–467. https://doi.org/10.1016/s0008-6363(02)00676-4

    Article  CAS  PubMed  Google Scholar 

  63. Pourbagher-Shahri, A.M., Farkhondeh, T., Talebi, M., Kopustinskiene, D.M., Samarghandian, S., and Bernatoniene, J., An overview of NO signaling pathways in aging, Molecules, 2021, vol. 26, no. 15, p. 4533. https://doi.org/10.3390/molecules26154533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rameau, G.A., Chiu, L.Y., and Ziff, E.B., Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor, J. Biol. Chem., 2004, vol. 279, no. 14, pp. 14307–14314. https://doi.org/10.1074/jbc.M311103200

    Article  CAS  PubMed  Google Scholar 

  65. Reutov, V.P., Samosudova, N.V., and Sorokina, E.G., A model of glutamate neurotoxicity and mechanisms of development of the typical pathological process, Biophysics (Moscow), 2019, vol. 64, no. 2, pp. 233–250. https://doi.org/10.1134/S000630291902011X

    Article  CAS  Google Scholar 

  66. Rochlani, Y., Pothineni, N.V., Kovelamudi, S., and Mehta, J.L., Metabolic syndrome: pathophysiology, management, and modulation by natural compounds, Ther. Adv. Cardiovasc., 2017, vol. 11, no. 8, pp. 215–225. https://doi.org/10.1177/1753944717711379

    Article  CAS  Google Scholar 

  67. Saklayen, M.G., The global epidemic of the metabolic syndrome, Curr. Hypertens. Rep., 2018, vol. 20, p. 12. https://doi.org/10.1007/s11906-018-0812-z

    Article  PubMed  PubMed Central  Google Scholar 

  68. Samengo, G., Avik, A., Fedor, B., Whittaker, D., Myung, K.H., Wehling-Henricks, M., and Tidball, J.G., Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia, Aging Cell, 2012, vol. 11, pp. 1036–1045. https://doi.org/10.1111/acel.12003

    Article  CAS  PubMed  Google Scholar 

  69. Sears, C.E., Bryant, S.M., Ashley, E.A., Lygate, C.A., Rakovic, S., Wallis, H.L., Neubauer, S., Terrar, D.A., and Casadei, B., Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling, Circ. Res., 2003, vol. 92, pp. e52–e59. https://doi.org/10.1161/01.RES.0000064585.95749.6D

    Article  CAS  PubMed  Google Scholar 

  70. Shabeeh, H., Khan, S., Jiang, B., Brett, S., Melikian, N., Casadei, B., Chowienczyk, P.J., and Shan, A.M., Blood pressure in healthy humans is regulated by neuronal NO synthase, Hypertension, 2017, vol. 69, pp. 970–976. https://doi.org/10.1161/HYPERTENSIONAHA.116.08792

    Article  CAS  PubMed  Google Scholar 

  71. Soodaeva, S., Klimakov, I., Kubysheva, N., Popova, N., and Batyrshin, I., The state of the nitric oxide cycle in respiratory tract diseases, Oxid. Med. Cell. Longev., 2020, vol. 2020, p. 4859260. https://doi.org/10.1155/2020/4859260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stefano, G.B. and Kream, R.M., Alkaloids, nitric oxide, and nitrite reductases: evolutionary coupling as regulators of cellular bioenergetics with special relevance to the human microbiome, Med. Sci. Monit., 2018, vol. 24, pp. 3153–3158. https://doi.org/10.12659/MSM.909409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stephens, T.J., Canny, B.J., Snow, R.J., and McConell, G.K., 5′-Aminoimidazole-4-carboxyamide-ribonucleoside-activated glucose transport is not prevented by nitric oxide synthase in rat isolated skeletal muscle, Clin. Exp. Pharmacol. Physiol., 2004, vol. 31, no. 7, pp. 419–423. https://doi.org/10.1111/j.1440-1681.2004.04014.x

    Article  CAS  PubMed  Google Scholar 

  74. Stuehr, D.J. and Haque, M.M., Nitric oxide synthase enzymology in the 20 years after the Nobel Prize, Br. J. Pharmacol., 2019, vol. 176, no. 2, pp. 177–188. https://doi.org/10.1111/bph.14533

    Article  CAS  PubMed  Google Scholar 

  75. Suhr, F., Gehlert, S., Grau, M., and Bloch, W., Skeletal muscle function during exercise-fine-tuning of diverse subsystems by nitric oxide, Int. J. Mol. Sci., 2013, vol. 4, no. 4, pp. 7109–7139. https://doi.org/10.3390/ijms14047109

    Article  CAS  Google Scholar 

  76. Talebi, M., İlgün, S., Ebrahimi, V., Talebi, M., Farkhondeh, T., Ebrahimi, H., and Samarghandian, S., Zingiber officinale ameliorates Alzheimer’s disease and cognitive impairments: lessons from preclinical studies, Biomed. Pharmacother., 2021, vol. 133. https://doi.org/10.1016/j.biopha.2020.111088

  77. Tang, L., Wang, H., and Ziolo, M.T., Targeting NOS as a therapeutic approach for heart failure, Pharmacol. Ther., 2014, vol. 142, no. 3, pp. 306–315. https://doi.org/10.1016/j.pharmthera.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  78. Terradas, A.L., Vitadello, M., Traini, L., Namuduri, A.V., Gastaldello, S., and Gorza, L., Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy, J. Pathol., 2018, vol. 246, no. 4, pp. 433–446. https://doi.org/10.1002/path.5149

    Article  CAS  Google Scholar 

  79. Watts, V.L., Sepulveda, F.M., Cingolani, O.H., Ho, A.S., Niu, X., Kim, R., Miller, K.L., Vandegaer, K., Bedja, D., Gabrielson, K.I., …, and Barouch, L.A., Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation, J. Mol. Cell Cardiol., 2013, vol. 62, pp. 8–17. https://doi.org/10.1016/j.yjmcc.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wehling-Henricks, M. and Tidball, J.G., Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane, PLoS One, 2011, vol. 6, p. e25071. https://doi.org/10.1371/journal.pone.0025071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, K.L.H., Chao, Y.M., Tsay, S.J., Chen, C.H., Chan, S.H.H., Dovinova, I., and Chan, J.Y., Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome, Hypertension, 2014, vol. 64, pp. 815–824. https://doi.org/10.1161/HYPERTENSIONAHA.114.03777

    Article  CAS  PubMed  Google Scholar 

  82. Yu, Q., Gao, F., and Ma, X.L., Insulin says NO to cardiovascular disease, Cardiovasc. Res., 2011, vol. 89, pp. 516–524. https://doi.org/10.1093/cvr/cvq349

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Y.H., Neuronal nitric oxide synthase in hypertension—an update, Clin. Hypertens., 2016, vol. 22, p. 20. https://doi.org/10.1186/S40885-016-0055-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, Y.H., Nitric oxide signaling and neuronal nitric oxide synthase in the heart under stress, F1000Res., 2017, vol. 6, p. 742. https://doi.org/10.12688/f1000research.10128.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y.H., Zhang, M.H., Sears, C.E., Emanuel, K., Redwood, C., El-Armouche, A., Kranias, E.G., and Casadei, B., Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice, Circ. Res., 2008, vol. 102, pp. 242–249. https://doi.org/10.1161/CIRCUESAHA.107.164798

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y.H., Jang, J.H., and Wang, Y., Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology, J. Physiol., 2014, vol. 592, no. 15, pp. 3189–3200. https://doi.org/10.1113/jphysiol.2013.270306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao, D., Watson, J.B., and Xie, C.W., Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation, J. Neurophysiol., 2004, vol. 92, pp. 2853–2858. https://doi.org/10.1152/jn.00485.2004

    Article  CAS  PubMed  Google Scholar 

  88. Zhou, L. and Zhu, D.Y., Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications, Nitric Oxide, 2009, vol. 20, no. 4, pp. 223–230. https://doi.org/10.1016/j.niox.2009.03.001

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. S. Maslov for assistance in the design of figures.

Funding

This work was carried out within the framework of state assignment no. 075-00967-23-00 of the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kuznetsova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human beings performed by any of the authors.

Additional information

Translated by A. Barkhash

Abbreviations: MSmetabolic syndrome; T2DM—type 2 diabetes mellitus; CVD—cardiovascular diseases; CaM—bound calmodulin; nitric oxide synthase—nNOS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, L.A., Basova, N.E. & Shpakov, A.O. Neuronal NO Synthase in the Pathogenesis of Metabolic Syndrome. Cell Tiss. Biol. 17, 1–15 (2023). https://doi.org/10.1134/S1990519X23010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23010108

Keywords:

Navigation