Skip to main content
Log in

Immunophenotypic and Morphometric Evaluation of Bone Marrow Macrophage Culture Stimulated by Sodium Aminodihydrophthalazinedione In Vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Morphometric and immunophenotypic characteristics of rat bone marrow macrophages isolated from intact animals and stimulated with sodium aminodihydrophthalazinedione (ADPN) under cultivation for 24, 48, and 72 h were studied. The following morphometric parameters were determined: the cell area, the area of the cytoplasm and nuclei, as well as the nuclear-cytoplasmic ratio (NCR). The proliferative activity was evaluated on the basis of the presence of the Ki-67 marker. The phenotype of macrophages was determined by the markers CD163 (M2 phenotype) and F4/80 (M1 phenotype) present on the cell surface. In addition, the content of the TGF-β growth factor in the macrophage cytoplasm was evaluated. The stimulation of macrophages with ADPN at a dose of 50 μg/mL promotes an increase in the number of CD163+ cells and the content of this marker with increasing cultivation time. On the contrary, the action of 100 μg/mL ADPN leads to an increase in the proportion of F4/80+ cells in the culture and to the growth in the content of this marker with increasing cultivation time. The accumulation of TGF-β occurs for 48 h of cell culturing in the presence of 50 μg/mL ADPN, and its increased content is retained for 72 h. ADPN at the dose of 100 μg/mL enhances the formation of TGF-β to 48 h and inhibits it to 72 h of cell culturing with the substance. The maturation of macrophages is accelerated when ADPN is added to the culture of monocytes, and the substance also has a pronounced dose-dependent effect on BM macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Blériot, C., Dupuis, T., Jouvion, G., Eberl, G., Disson, O., and Lecuit, M., Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection, Immunity, vol. 42, no. 1, p. 145.

  2. Bonnardel, J. and Guilliams, M., Developmental control of macrophage function, Curr. Opin. Immunol., 2018, vol. 50, p. 64.

    Article  CAS  Google Scholar 

  3. Chang, M.K., Raggatt, L.-J., Alexander, K.A., Kuliwa-ba, J.S., Fazzalari, N.L., Schroder, K., Maylin, E.R., Ripoll, V.M., Hume, D.A., and Pettit, A.R., Osteal tissue macrophages are intercalated throughouthuman and mouse bone lining tissues and regulate osteoblast functionin vitro and in vivo, J. Immunol., 2008, vol. 181, p. 1232.

    Article  CAS  Google Scholar 

  4. Cho, S.W., Soki, F.N., Koh, A.J., Eber, M.R., Entezami, P., Park, S.I., van Rooijen, N., and McCauley, L.K., Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, p. 1545.

    Article  CAS  Google Scholar 

  5. Chow, A., Lucas, D., Hidalgo, A., Méndez-Ferrer, S., Hashimoto, D., Scheiermann, C., Battista, M., Leboeuf, M., Prophete, C., Van Rooijen, N., Tanaka, M., Merad, M., and Frenette, P.S., Bone marrow CD169+ macrophages promote theretention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche, J. Exp. Med., 2011, vol. 208, p. 261.

    Article  CAS  Google Scholar 

  6. Christopher, M.J., Rao, M., Liu, F., Woloszynek, J.R., and Link, D.C., Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoieticprogenitor mobilization by G-CSF in mice, J. Exp. Med., 2011, vol. 208, p. 251.

    Article  CAS  Google Scholar 

  7. Danilova, I.G., Bulavintceva, T.S., Gette, I.F., and Medvedeva, S.Y., Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats, Biomed. Pharmacother., 2017, vol. 95. https://doi/org/https://doi.org/10.1016/j.biopha.2017.07.117

  8. Danilova, I.G., Emelianov, V.V., Gette, I.F., Medvedeva, S.Yu., Bulavintseva, T.S., Chereshneva, M.V., Sidorova, L.P., Chereshnev, V.A., and Sokolova, K.V., Cytokine regulation of regenerative processes in pancreatic gland in alloxan-induced diabetic rats and it correction by 1,3,4-thiadiazine composition and lipoic acid, Med. Immunol., 2018, vol. 20, no. 1, p. 35.

    Article  Google Scholar 

  9. Danilova, I.G., Shafigullina, Z.A., Gette, I.F., Sencov, V.G., Medvedeva, S.Y., and Abidov, M.T., Accelerated liver recovery after acute CCl4 poisoning in rats treated with sodium phthalhydrazide, Int. Immunopharmacol., 2020, vol. 80. https://doi/org.1016/j.intimp. 2019.106124

  10. Davies, L.C., Rosas, M., Jenkins, S.J., Liao, C.T., Scurr, M.J., Brombacher, F., Fraser, D.J., Allen, J.E., Jones, S.A., and Taylor, P.R., Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation, Nat. Commun., 2013, vol. 4, p. 1886.

    Article  Google Scholar 

  11. Dutta, P., Hoyer, F.F., Grigoryeva, L.S., Sager, H.B., Leuschner, F., Courties, G., Borodovsky, A., Novobrantse-va, T., Ruda, V.M., Fitzgerald, K., Iwamoto, Y., Wojtkiewicz, G., Sun, Y., Da Silva, N., Libby, P., et al., Macrophages retain hematopoietic stem cells in the spleen via VCAM-1, J. Exp. Med., 2015, vol. 212, p. 497.

    Article  CAS  Google Scholar 

  12. Hur, J., Choi, J.I., Lee, H., Nham, P., Kim, T.W., Chae, C.W., Yun, J.Y., Kang, J.A., Kang, J.H., Lee, S.E., Yoon, C.H., Boo, K.J., Ham, S.J., Roh, T.Y., Jun, J.K., et al., CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages, Cell Stem Cell, 2016, vol. 18, p. 508.

    Article  CAS  Google Scholar 

  13. Jacobsen, R.N., Forristal, C.E., Raggatt, L.J., Nowlan, B., Barbier, V., Kaur, S., Van Rooijen, N., Winkler, I.G., Pettit, A.R., and Levesque, J.P., Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse, Exp. Hematol., 2014, vol. 42, p. 547.

    Article  CAS  Google Scholar 

  14. Jukić, T., Abidov, M., and Ihan, A., A tetrahydrophthalazine derivative 'sodium nucleinate" exerts a potent suppressive effect upon LPS-stimulated mononuclear cells in vitro and in vivo, Collegium Antropol., 2011, vol. 35, p. 1219.

    Google Scholar 

  15. Jukić, T., Ihan, A., and Jukić, D., Tetrahydrophthalazine derivative “sodium nucleinate” exert its anti-inflammatory effects through inhibition of oxidative burst in human monocytes, Collegium Antropol., 2012, vol. 36, p. 409.

    Google Scholar 

  16. Kawane, K., Fukuyama, H., Kondoh, G., Takeda, J., Ohsawa, Y., Uchiyama, Y., and Nagata, S., Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver, Science, 2001, vol. 292, pp. 1546–1549.

    Article  CAS  Google Scholar 

  17. Kristiansen, M., Graversen, J.H., Jacobsen, C., Sonne, O., Hoffman, H.J., Law, S.K., and Moestrup, S.K., Identification of the haemoglobin scavenger receptor, Nature, 2001, vol. 409, p. 198.

    Article  CAS  Google Scholar 

  18. Li, J.Y., Chassaing, B., Tyagi, A.M., Vaccaro, C., Luo, T., and Adams, J., Sex steroiddeficiency-associated bone loss is microbiota dependent and prevented byprobiotics, J. Clin. Invest., 2016, vol. 126, p. 2049–2063.

    Article  Google Scholar 

  19. Liu, M., Jin, X., He, X., Pan, L., Zhang, X., and Zhao, Y., Macrophages support splenicerythropoiesis in 4T1 tumor-bearing mice, PLoS One, 2015, vol. 10. e0121921. https://doi.org/10.1371/journal.pone.0121921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Madaan, A., Verma, R., Singh, A.T., Jain, S.K., and Jaggi, M., A stepwise procedure for isolation of murine bone marrow and generation of dendritic cells, J. Biol. Methods, 2014, vol. 1, p. 1.

    Article  Google Scholar 

  21. Nagareddy, P.R., Kraakman, M., Masters, S.L., Stirzaker, R.A., Gorman, D.J., Grant, R.W., Drago-ljevic, D., Hong, E.S., Abdel-Latif, A., Smyth, S.S., Choi, S.H., Korner, J., Bornfeldt, K.E., Fisher, E.A., Dixit, V.D., et al., Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity, Cell Metab., 2014, vol. 19, p. 821.

    Article  CAS  Google Scholar 

  22. Osterud, B. and Bjorklid, E., Role of monocytes in atherogenesis, Physiol. Rev., 2003, vol. 83, p. 1069.

    Article  CAS  Google Scholar 

  23. Pettit, A.R., Chang, M.K., Hume, D.A., and Raggatt, L.J., Osteal macrophages: a newtwist on coupling during bone dynamics, Bone, 2008, vol. 43, p. 976.

    Article  Google Scholar 

  24. Pozdina, V.A., Danilova, I.G., and Abidov, M.T., Immunophenotypical aspects of lung and spleen macrophages derived animals with the model of alloxan diabetes (type I) and their correction by sodium aminodigydrophtalazindione in vitro, Ross. Immunol. Zh., 2020, vol. 23, no. 2, p. 145.

    Google Scholar 

  25. Pozdina, V.A., Danilova, I.G., and Abidov, M.T., Immunophenotypic characteristics of macrophages in liver and peritoneal area of animals with model of diabetes mellitus type 1 and their corrections with sodium aminodihydrophthalazindione in vitro, Cell Tissue Biol., 2021, vol. 15, no. 2, P. 150.

    Article  Google Scholar 

  26. Röszer, T., Understanding the biology of self-renewing macrophages, Cells, 2018, vol. 7, p. 103.

    Article  Google Scholar 

  27. Sarbaeva, N.N., Ponomareva, J.V., and Milyakova, M.N., Macrophages: diversity of phenotypes and functions, interaction with foreign materials, Geny Kletki, 2016, vol. 11, no. 1, p. 9.

    Google Scholar 

  28. Schaer, D.J., Schaer, C.A., Buehler, P.W., Boykins, R.A., Schoedon, G., Alayash, A.I., Schaffner, A., CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin, Blood, 2006, vol. 107, p. 373.

    Article  CAS  Google Scholar 

  29. Sharafutdinova, E.N., Gorshkova, I.I., Sadrtinova, Z.R., and Khismadulina, S.A., Evaluation of the morphological parameters of neutrophilic granulocytes by atomic force microscopy after exposure to fullerene C60, Biomeditsina, 2014, vol. 3, pp. 49–53.

    Google Scholar 

  30. Sinder, B.P., Pettit, A.R., and McCauley, L.K., Macrophages: their emerging roles in bone, J. Bone Miner. Res., 2015, vol. 30, p. 2140.

    Article  Google Scholar 

  31. Sonoda, Y. and Sasaki, K., Surface morphology of the central macrophages oferythroblastic islets in the spleen of aged and pregnant mice: animmunohistochemical light microscopic study, Arch. Histol. Cytol., 2008, vol. 71, p. 155.

    Article  Google Scholar 

  32. Sumina, V.P., Gagieva, A.V., and Didenko, M.I., A review of the control of the immune response: reprogramming of macrophages as a promising direction of pathophysiology, Zdor. Obrazv 21 Veke, 2016, vol. 18, no. 3, p. 92.

  33. Toda, S., Segawa, K., and Nagata, S., MerTK-mediated engulfment of pyrenocytesby central macrophages in erythroblastic islands, Blood, 2014, vol. 123, p. 3963.

    Article  CAS  Google Scholar 

  34. Tonkin, J., Temmerman, L., Sampson, R.D., Gallego-Colon, E., Barberi, L., Bilbao, D., Schneider, M.D., Musaro, A., and Rosenthal, N., Monocyte/macrophage-derived IGF-1 orchestrates murineskeletal muscle regeneration and modulates autocrine polarization, Mol. Ther., 2015, vol. 23, p. 1189.

    Article  CAS  Google Scholar 

  35. Ulyanova, T., Jiang, Y., Padilla, S., Nakamoto, B., and Papayannopoulou, T., Combinatorial and distinct roles of alpha(5) and alpha(4) integrins in stress erythropoiesis in mice, Blood, 2011, vol. 117, p. 975.

    Article  CAS  Google Scholar 

  36. Winkler, I.G., Sims, N.A., Pettit, A.R., Barbier, V., Nowlan, B., Helwani, F., Poulton, I.J., Van Rooijen, N., Alexander, K.A., Raggatt, L.J., Levesque, J.P., et al., Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSC, Blood, 2010, vol. 116. I. 23, p. 4815.

  37. Wu, A.C., Raggatt, L.J., Alexander, K.A., and Pettit, A.R., Unraveling macrophage contributions to bone repair, Bone Key Rep., 2013, vol. 2, p. 373.

    Google Scholar 

  38. Wu, A.C., He, Y., Broomfield, A., Paatan, N.J., Harrington, B.S., Tseng, H.W., Beaven, E.A., Kiernan, D.M., Swindle, P., Clubb, A.B., Levesque, J.P., Winkler, I.G., Ling, M.T., Srinivadan, B., Hooper, J.D., et al., CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer, J. Pathol., 2016, vol. 239, p. 218.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the framework of the Budget Program “Study of the Mechanisms of Regenerative Processes in Organs and Tissues Using Experimental Models of Extreme Factors and Toxic Effects on the Body,” state registration no. АААА-А18-118020590107-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pozdina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and institutional guidelines for the care and use of animals were followed. All experiments on animals were approved by the Ethics Committee of the Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences (no. d-TM-2016-20) and performed in accordance with the principles formulated in Directive 2010/63/EU.

Additional information

Translated by D. Novikova

Abbreviations: BM—bone marrow, CCM—complete culture medium, EBI—erythroblastic island, NO—nitrogen oxide, HSC—hematopoietic stem cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdina, V.A., Zvedeninova, U.V., Ulitko, M.V. et al. Immunophenotypic and Morphometric Evaluation of Bone Marrow Macrophage Culture Stimulated by Sodium Aminodihydrophthalazinedione In Vitro. Cell Tiss. Biol. 15, 594–603 (2021). https://doi.org/10.1134/S1990519X21060158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21060158

Keywords:

Navigation