Skip to main content
Log in

Features of Brain Astrocyte Damage under the Influence of L-Aminoadipic Acid In Vitro and In Vivo

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

L-Aminoadipic acid (L-AA) is known to have toxic effects on astroglia. The purpose of the work is to characterize the morphological changes in astrocytes in vitro and in vivo under the influence of L-AA. The effect of L-AA in the concentration range 0.17–1.4 mM on astrocytes was evaluated in primary dissociated cultures of the rat cerebral cortex and cerebellum, as well as upon stereotaxic injection (20 μg) into the striatum of rats. Concentrations of 0.35–1.4 mM L-AA caused a decrease in the expression of acidic glyofibrillar protein (GFAP), damage and death of astrocytes, pyknosis, and activation of lysosomes (increased LAMP2 expression). On the second day after the injection of L-AA into the striatum of rats, an extensive lesion area devoid of GFAP-positive staining was formed. The data obtained showed that the use of L-aminoadipic acid is promising for modeling damage to astroglia in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Anderson, M.A., Burda, J.E., Ren, Y., Ao, Y., O’Shea, T.M., Kawaguchi, R., Coppola, G., Khakh, B.S., Deming, T.J., and Sofroniew, M.V., Astrocyte scar formation aids central nervous system axon regeneration, Nature, 2016, vol. 532, p. 195.

    Article  CAS  Google Scholar 

  2. Banasr, M. and Duman, R.S., Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors, Biol. Psychiatry, 2008, vol. 64, p. 863.

    Article  Google Scholar 

  3. Billet, F., Costentin, J., and Dourmap, N., Influence of glial cells in the dopamine releasing effect resulting from the stimulation of striatal δ-opioid receptors, Neuroscience, 2007, vol. 150, p. 131.

    Article  CAS  Google Scholar 

  4. Brown, D.R. and Kretzschmar, H.A., The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes, J. Neurocytol., 1998, vol. 27, p. 109.

    Article  CAS  Google Scholar 

  5. Buffo, A. and Rossi, F., Origin, lineage and function of cerebellar glia, Prog. Neurobiol., 2013, vol. 109, p. 42.

    Article  Google Scholar 

  6. Buffo, A., Rite, I., Tripathi, P., Lepier, A., Colak, D., Horn, A.-P., Mori, T., and Götz, M., Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 3581.

    Article  CAS  Google Scholar 

  7. Cerrato, V., Parmigiani, E., Figueres-Oñate, M., Betizeau, M., Aprato, J., Nanavaty, I., Berchialla, P., Luzzati, F., de’Sperati, C., López-Mascaraque, L., and Buffo, A., Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity, PLoS Biol., 2018, vol. 16, e2005513. https://doi.org/10.1371/journal.pbio.2005513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, Y.F., Cauley, R.K., Chang, J.D., and Rao, V.V., L‑Alpha-aminoadipate inhibits kynurenate synthesis in rat brain hippocampus and tissue culture, Neurochem. Res., 1997, vol. 22, p. 825.

    Article  CAS  Google Scholar 

  9. Chiu, C.-D., Yao, N.-W., Guo, J.-H., Shen, C.-C., Lee, H.-T., Chiu, Y.-P., Ji, H.-R., Chen, X., Chen, C.-C., and Chang, C., Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage, Oncotarget, 2017, vol. 8, p. 94850.

    Article  Google Scholar 

  10. da Silva, J.C., Amaral, A.U., Cecatto, C., Wajner, A., dos Santos Godoy, K., Ribeiro, R.T., de Mello Gonçalves, A., Zanatta, Â., da Rosa, M.S., Loureiro, S.O., Vargas, C.R., Leipnitz, G., de Souza, D.O.G., and Wajner, M., α-Ketoadipic acid and α-aminoadipic acid cause disturbance of glutamatergic neurotransmission and induction of oxidative stress in vitro in brain of adolescent rats, Neurotox. Res., 2017, vol. 32, p. 276.

    Article  Google Scholar 

  11. Faiz, M., Sachewsky, N., Gascón, S., Bang, K.W.A., Morshead, C.M., and Nagy, A., Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke, Cell. Stem Cell, 2015, vol. 17, p. 624.

    Article  CAS  Google Scholar 

  12. Ge, W.-P., Miyawaki, A., Gage, F.H., Jan, Y.N., and Jan, L.Y., Local generation of glia is a major astrocyte source in postnatal cortex, Nature, 2012, vol. 484, p. 376.

    Article  CAS  Google Scholar 

  13. Hayakawa, K., Nakano, T., Irie, K., Higuchi, S., Fujioka, M., Orito, K., Iwasaki, K., Jin, G., Lo, E.H., Mishima, K., and Fujiwara, M., Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice, J. Cereb. Blood. Flow. Metab., 2010, vol. 30, p. 871.

    Article  CAS  Google Scholar 

  14. Huck, S., Grass, F., and Hortnagl, H., The glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro, J. Neurosci., 1984, vol. 4, p. 2650.

    Article  CAS  Google Scholar 

  15. Iglesias, J., Morales, L., and Barreto, G.E., Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs, Mol. Neurobiol., 2017, vol. 54, p. 2518. https://doi.org/10.1007/s12035-016-9833-2

    Article  CAS  PubMed  Google Scholar 

  16. Jäkel, S. and Dimou, L., Glial cells and their function in the adult brain: a journey through the history of their ablation, Front. Cell. Neurosci., 2017, vol. 11. https://doi.org/10.3389/fncel.2017.00024

  17. Katsouri, L., Birch, A.M., Renziehausen, A.W.J., Zach, C., Aman, Y., Steeds, H., Bonsu, A., Palmer, E.O.C., Mirzaei, N., Ries, M., and Sastre, M., Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer’s disease, Glia, 2020, vol. 68, p. 1017.

    Article  Google Scholar 

  18. Khaspekov, L.G. and Frumkina, L.E., Molecular mechanisms mediating involvement of glial cells in plastic brain reorganization in epilepsy, Biochemistry, 2017, vol. 18, no. 3, p. 528.

    Google Scholar 

  19. Khurgel, M., Koo, A.C., and Ivy, G.O., Selective ablation of astrocytes by intracerebral injections of α-aminoadipate, Glia, 1996, vol. 16, p. 351.

    Article  CAS  Google Scholar 

  20. Kuter, K., Olech, Ł., Głowacka, U., and Paleczna, M., Astrocyte support is important for the compensatory potential of the nigrostriatal system neurons during early neurodegeneration, J. Neurochem., 2019, vol. 148, p. 63.

    CAS  PubMed  Google Scholar 

  21. Lee, H.J., Jang, H.B., Kim, W.H., Park, K.J., Kim, K.Y., Park, S.I., and Lee, H.J., 2-Aminoadipic acid (2-AAA) as a potential biomarker for insulin resistance in childhood obesity, Sci. Rep., 2019, vol. 9, p. 13610. https://doi.org/10.1038/s41598-019-49578-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, F., Dai, S., Feng, D., Peng, X., Qin, Z., Kearns, A.C., Huang, W., Chen, Y., Ergün, S., Wang, H., Rappaport, J., Bryda, E.C., Chandrasekhar, A., Aktas, B., Hu, H., et al., Versatile cell ablation tools and their applications to study loss of cell functions, Cell. Mol. Life Sci., 2019, vol. 76, p. 4725.

    Article  CAS  Google Scholar 

  23. Madadi, S., Pasbakhsh, P., Tahmasebi, F., Mortezaee, K., Khanehzad, M., Boroujeni, F.B., Noorzehi, G., and Kashani, I.R., Astrocyte ablation induced by L-α-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model, Metab. Brain Dis., 2019, vol. 34, p. 593.

    Article  CAS  Google Scholar 

  24. McConnell, H.L., Li, Z., Woltjer, R.L., and Mishra, A., Astrocyte dysfunction and neurovascular impairment in neurological disorders: correlation or causation?, Neurochem. Int., 2019, vol. 128, p. 70.

    Article  CAS  Google Scholar 

  25. Morales, I., Sanchez, A., Rodriguez-Sabate, C., and Rodriguez, M., Striatal astrocytes engulf dopaminergic debris in Parkinson’s disease: a study in an animal model, PLoS One, 2017, vol. 12, e0185989. https://doi.org/10.1371/journal.pone.0185989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morizawa, Y.M., Hirayama, Y., Ohno, N., Shibata, S., Shigetomi, E., Sui, Y., Nabekura, J., Sato, K., Okajima, F., Takebayashi, H., Okano, H., and Koizumi, S., Reactive astrocytes function as phagocytes after brain ischemia via A-BCA1-mediated pathway, Nat. Commun., 2017, vol. 8, p. 28. https://doi.org/10.1038/s41467-017-00037-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishimura, R.N., Santos, D., Fu, S.T., and Dwyer, B.E., Induction of cell death by L-alpha-aminoadipic acid exposure in cultured rat astrocytes: relationship to protein synthesis, Neurotoxicology, 2000, vol. 21, p. 313.

    CAS  PubMed  Google Scholar 

  28. O’Neill, E., Chiara Goisis, R., Haverty, R., and Harkin, A., L-alpha-aminoadipic acid restricts dopaminergic neurodegeneration and motor deficits in an inflammatory model of Parkinson’s disease in male rats, J. Neurosci. Res., 2019, vol. 97, p. 804.

    Article  Google Scholar 

  29. Olney, J.W., de Gubareff, T., and Collins, J.F., Stereospecificity of the gliotoxic and anti-neurotoxic actions of alpha-aminoadipate, Neurosci. Lett., 1980, vol. 19, p. 277.

    Article  CAS  Google Scholar 

  30. Pekny, M. and Pekna, M., Reactive gliosis in the pathogenesis of CNS diseases, Biochim. Biophys. Acta, 2016, vol. 1862, p. 483.

    Article  CAS  Google Scholar 

  31. Pow, D.V., Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate, Glia, 2001, vol. 34, p. 27.

    Article  CAS  Google Scholar 

  32. Qin, A.P., Liu, C.F., Qin, Y.Y., Hong, L.Z., Xu, M., Yang, L., Liu, J., Qin, Z.H., and Zhang, H.L., Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia, Autophagy, 2010, vol. 6, p. 738.

    Article  CAS  Google Scholar 

  33. Saffran, B.N. and Crutcher, K.A., Putative gliotoxin, α‑aminoadipic acid, fails to kill hippocampal astrocytes in vivo, Neurosci. Lett., 1987, vol. 81, p. 215.

    Article  CAS  Google Scholar 

  34. Śmiałowska, M., Szewczyk, B., Woźniak, M., Wawrzak-Wleciał, A., and Domin, H., Glial degeneration as a model of depression, Pharmacol. Rep., 2013, vol. 65, p. 1572.

    Article  Google Scholar 

  35. Sofroniew, M.V., Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci., 2009, vol. 32, p. 638. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stavrovskaya, A.V., Voronkov, D.N., Ol’shansky, A.S., Gushchina, A.S., and Yamshchikova, N.G., Experimental parkinsonism in modeling striatal astrocyte damage, Annaly Klin. Eksp. Nevrol., 2019, vol. 13, no. 3, p. 28.

    Google Scholar 

  37. Takeda, M., Takamiya, A., Jiao, J.W., Cho, K.S., Trevino, S.G., Matsuda, T., and Chen, D.F., Alpha-aminoadipate induces progenitor cell properties of Müller glia in adult mice, Investig. Opthalmol. Vis. Sci., 2008, vol. 49, p. 1142. https://doi.org/10.1167/iovs.07-0434

    Article  Google Scholar 

  38. Tang, G., Yue, Z., Talloczy, Z., and Goldman, J.E., Adaptive autophagy in Alexander disease-affected astrocytes, Autophagy, 2008, vol. 4, p. 701.

    Article  CAS  Google Scholar 

  39. Verkhratsky, A. and Nedergaard, M., Physiology of astroglia, Physiol. Rev., 2018, vol. 98, p. 239.

    Article  CAS  Google Scholar 

  40. Wang, J.-L. and Xu, C.-J., Astrocytes autophagy in aging and neurodegenerative disorders, Biomed. Pharmacother., 2020, vol. 122, p. 109691. https://doi.org/10.2147/DDDT.S105362

    Article  CAS  PubMed  Google Scholar 

  41. Wang, T.J., Ngo, D., Psychogios, N., Dejam, A., Larson, M.G., Vasan, R.S., Ghorbani, A., O’Sullivan, J., Cheng, S., Rhee, E.P., Sinha, S., McCabe, E., Fox, C.S., O’Donnell, C.J., Ho, J.E., et al., 2-Aminoadipic acid is a biomarker for diabetes risk, J. Clin. Invest., 2013, vol. 123, p. 4309.

    Article  CAS  Google Scholar 

  42. Wang, X., Su, J., Ding, J., et al., α-Aminoadipic acid protects against retinal disruption through attenuating Muller cell gliosis in a rat model of acute ocular hypertension, Drug Des. Devel. Ther., 2016, vol. 10, p. 3449.

    Article  CAS  Google Scholar 

  43. Watmuff, B., Berkovitch, S.S., Huang, J.H., Iaconelli, J., Toffel, S., and Karmacharya, R., Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells, Mol. Cell Neurosci., 2016, vol. 73, p. 96.

    Article  CAS  Google Scholar 

  44. West, E.L., Pearson, R.A., Tschernutter, M., Sowden, J.C., MacLaren, R.E., and Ali, R.R., Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors, Exp. Eye Res., 2008, vol. 86, p. 601.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out at the expense of budgetary funding of the Federal State Budgetary Scientific Institution Scientific Center of Neurology within the framework of a state assignment.

Author information

Authors and Affiliations

Authors

Contributions

Research concept and design—D.N. Voronkov, Yu.V. Dikalova; analysis and interpretation of data— R.M. Khudoerkov, Voronkov D.N., Dikalova Yu.V.; holding experiment and material processing—A.A. Lyzhin, D.N. Voronkov, Yu.V. Dikalova, A.V. Stavrovskaya; statistical processing—D.N. Voronkov, Yu.V. Dikalova; writing work—D.N. Voronkov, R.M. Khudoerkov, Yu.V. Dikalova, L.G. Khaspekov; final editing of the text—R.M. Khudoerkov, L.G. Khaspekov, Yu.V. Dikalova.

Corresponding author

Correspondence to Yu. V. Dikalova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. Manipulations with animals were carried out in accordance with regulatory documents (Principles Good Laboratory Practice 2009, GOST R 53434-200 and EU recommendations “Euthanasia of experimental animals,” 1997, ISBN 92-827-9694-9). The number of the decision of the local ethics committee no. 2-5/19 from February 20, 2019.

Additional information

Abbreviations: GFAP—acidic glyofibrillar protein, L-AA—L‑aminoadipic acid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronkov, D.N., Lyzhin, A.A., Dikalova, Y.V. et al. Features of Brain Astrocyte Damage under the Influence of L-Aminoadipic Acid In Vitro and In Vivo. Cell Tiss. Biol. 15, 347–355 (2021). https://doi.org/10.1134/S1990519X21040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21040106

Keywords:

Navigation