Skip to main content
Log in

Establishment of HindIIIG-1 Cell Line, Obtained after Irradiation of HindIIIG Cells Resistant to Apoptosis, Characterizes by Genomic Instability, Altered DNA Repair Mechanisms and Activation of Autophagy

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Genomic instability and heterogeneity are the key features of cancer cells that allow their survival under environmental stress. A rapid accumulation of a large number of mutations in a single event due to a massive rearrangement of fragmented chromosomes termed chromothripsis favors cancer progression and resistance to therapy. Complex chromosomal rearrangements that occur upon chromothripsis arise from a random ligation of multiple chromosome fragments by an error-prone NHEJ DNA repair. Here we studied the activation of DDR and NHEJ as markers of genomic instability in HindIIIG-1 cells obtained after depolyploidization of irradiated HindIIIG cells resistant to apoptosis. We also analyzed the potential involvement of chromothripsis-like mechanism and autophagy in the establishment of HindIIIG-1 cell line. Our results demonstrate that HindIIIG cells are characterized by high genomic instability, activation of DDR and NHEJ. Chromosome fragmentation and activation of NHEJ in irradiated HindIIIG and non-treated HindIIIG-1 cells suggest the implication of chromothripsis-like mechanism in the establishment of HindIIIG-1 cell line. We show that unlike HindIIIG cells, HindIIIG-1 cells acquired invasion ability and adhesion-independent cell growth that may indicate their metastatic potential. Degradation of damaged DNA, nuclei and micronuclei in HindIIIG-1 cells by autophagy suggests its role in cell death and survival and thereby in establishment of novel cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alexander, A., Cai, S.L., Kim, J., Nanez, A., Sahin, M., MacLean, K.H., Inoki, K., Guan, K.L., Shen, J., Person, M.D., Kusewitt, D., Mills, G.B., Kastan, M.B., and Walker, C.L., ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 4153. https://doi.org/10.1073/pnas.0913860107

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chellappan, S.P., Hiebert, S., Mudryj, M., Horo-witz, J.M., and Nevins, J.R., The E2F transcription factor is a cellular target for the RB protein, Cell, 1991, vol. 65, p. 1053. https://doi.org/10.1016/0092-8674(91)90557-F

    Article  CAS  PubMed  Google Scholar 

  3. Chitikova, Z.V., Gordeev, S.A., Bykova, T.V., Zubova, S.G., Pospelov, V.A., and Pospelova, T.V., Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers, Cell Cycle, 2014, vol. 13, p. 1424. https://doi.org/10.4161/cc.28402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cortés-Ciriano, I., Lee, J.J., Xi, R., Jain, D., Jung, Y.L., Yang, L., Gordenin, D., Klimczak, L.J., Zhang, C.-Z., Pellman, D., PCWAG Structural Variation Working Group, Park, P.J., and PCWAG Consortium, Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing, Nat. Genet., 2020, vol. 52, p. 331. https://doi.org/10.1038/s41588-019-0576-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crasta, K., Ganem, N.J., Dagher, R., Lantermann, A.B., Ivanova, E.V., Pan, Y., Nezi, L., Protopopov, A., Chowdhury, D., and Pellman, D., DNA breaks and chromosome pulverization from errors in mitosis, Nature, 2012, vol. 482, p. 53. https://doi.org/10.1038/nature10802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erenpreisa, J., Salmina, K., Huna, A., Kosmacek, E.A., Cragg, M.S., Ianzini, F., and Anisimov, A.P., Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation, Cell. Biol. Int., 2011, vol. 35, p. 687. https://doi.org/10.1042/CBI20100762

    Article  PubMed  Google Scholar 

  7. Erenpreisa, J., Huna, A., Salmina, K., Jackson, T.R., and Cragg, M.S., Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate?, Autophagy, 2012, vol. 8, p. 1877. https://doi.org/10.4161/auto.21610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feng, Z., Zhang, H., Levine, A.J., Jin, S., The coordinate regulation of the p53 and mTOR pathways in cells, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 8204−8209. https://doi.org/10.1073/pnas.0502857102 González, F., Georgieva, D., Vanoli, F., Shi, Z.D., Stadtfeld, M., Ludwig, T., Jasin, M., Huangfu, D., Homologous recombination DNA repair genes play a critical role in reprogramming to a pluripotent state, Cell Rep, 2013, vol. 3, pp. 651−660. https://doi.org/10.1016/j.celrep.2013.02.005

  9. Guan, J.-L., Simon, A.K., Prescott, M., Menendez, J.A., Liu, F., Wang, C., Wolvetang, E., Vazquez-Martin, A., and Zhang, J., Autophagy in stem cells, Autophagy, 2013, vol. 9, p. 830. https://doi.org/10.4161/auto.24132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hatch, E.M. and Hetzer, M.W., Linking micronuclei to chromosome fragmentation, Cell, 2015, vol. 161, p. 1502. https://doi.org/10.1016/j.cell.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  11. Hiebert, S.W., Chellappan, S.P., Horowitz, J.M., and Nevins, J.R., The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F, Genes Dev., 1992, vol. 6, p. 177. https://doi.org/10.1101/gad.6.2.177

    Article  CAS  PubMed  Google Scholar 

  12. Howell, W. and Black, D.A., Controller silver staining of nucleolus organizer regions with protective colloidal developer: a one-step method, Experientia, 1980, vol. 36, p. 1014. https://doi.org/10.1007/BF01953855

    Article  CAS  PubMed  Google Scholar 

  13. Jones, M.J.K. and Jallepalli, P.V., Chromothripsis: chromosomes in crisis, Dev. Cell, 2012, vol. 23, p. 908. https://doi.org/10.1016/j.devcel.2012.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kneissig, M., Keuper, K., de Pagter, M.S., van Roos-malen, M.J., Martin, J., Otto, H, Passerini, V., Campos Sparr, A., Renkens, I., Kropveld, F., Vasudevan, A., Sheltzer, J.M., Kloosterman, W.P., and Storchova, Z., Micronuclei-based model system reveals functional consequences of chromothripsis in human cells, eLife, 2019, vol. 8, e50292. https://doi.org/10.7554/eLife.50292

    Article  PubMed  PubMed Central  Google Scholar 

  15. Levine, B. and Yuan, J., Autophagy in cell death: an innocent convict?, J. Clin. Invest., 2005, vol. 115, p. 2679. https://doi.org/10.1172/JCI26390

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V., DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells, Cell Cycle, 2008, vol. 7, p. 2902. https://doi.org/10.4161/cc.7.18.6679

    Article  CAS  PubMed  Google Scholar 

  17. Mathew, R., Kongara, S., Beaudoin, B., Karp, C.M., Bray, K., Degenhardt, K., Chen, G., Jin, S., and White, E., Autophagy suppresses tumor progression by limiting chromosomal instability, Genes Dev., 2007, vol. 21, p. 1367. http://www.genesdev.org/cgi/doi/ 10.1101/gad.1545107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mehta, A. and Haber, J.E., Sources of DNA double-strand breaks and models of recombinational DNA repair, Cold Spring Harb. Perspect. Biol., 2014, vol. 6, p. a016428. https://doi.org/10.1101/cshperspect.a016428

    Article  PubMed  PubMed Central  Google Scholar 

  19. Menendez, J.A., Vellon, L., Oliveras-Ferraros, C., Cufí, S, and Vazquez-Martin, A., mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging, Cell Cycle, 2011, vol. 10, p. 3658. https://doi.org/10.4161/cc.10.21.18128

    Article  CAS  PubMed  Google Scholar 

  20. Mijaljica, D. and Devenish, R.J., Nucleophagy at a glance, J. Cell Sci., 2013, vol. 126, p. 4325. https://doi.org/10.1242/jcs.133090

    Article  CAS  PubMed  Google Scholar 

  21. Mizushima, N. and Levine, B., Autophagy in mammalian development and differentiation, Nat. Cell Biol., 2010, vol. 12, p. 823. https://doi.org/10.1038/ncb0910-823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Negrini, S., Gorgoulis, V.G., and Halazonetis, T.D., Genomic instability—an evolving hallmark of cancer, Nat. Rev. Mol. Cell Biol., 2010, vol. 11, p. 220. https://doi.org/10.1038/nrm2858

    Article  CAS  PubMed  Google Scholar 

  23. Ozkinay, C. and Mitelman, F., A simple trypsin-Giemsa technique producing simultaneous G- and C-banding in human chromosomes, Hereditas, 1979, vol. 90, p. 1. https://doi.org/10.1111/j.1601-5223.1979.tb01287.x

    Article  CAS  PubMed  Google Scholar 

  24. Panier, S. and Boulton, S.J., Double-strand break repair: 53BP1 comes into focus, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, p. 7. https://doi.org/10.1038/nrm3719

    Article  CAS  PubMed  Google Scholar 

  25. Pelletier, J., George Thomas, G., and Volarević, S., Ribosome biogenesis in cancer: new players and therapeutic avenues, Nat. Rev. Cancer, 2018, vol. 18, p. 51. https://doi.org/10.1038/nrc.2017.104

    Article  CAS  PubMed  Google Scholar 

  26. Polager, S., Ofir, M., and Ginsberg, D., E2F1 regulates autophagy and the transcription of autophagy genes, Oncogene, 2008, vol. 27, p. 4860. https://doi.org/10.1038/onc.2008.117

    Article  CAS  PubMed  Google Scholar 

  27. Pospelova, T.V., Chitikova, Z.V., and Pospelov, V.A., An integrated approach for monitoring cell senescence, Meth-ods Mol. Biol., 2013, vol. 965, p. 383. https://doi.org/10.1007/978-1-62703-239-1_26

    Article  CAS  Google Scholar 

  28. Rappold, I., Iwabuchi, K., Date, T., and Chen, J., Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways, J. Cell Biol., 2001, vol. 153, p. 613. https://doi.org/10.1083/jcb.153.3.613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rello-Varona, S., Lissa, D., Shen, S., Niso-Santano, M., Senovilla, L., Mariño, G., Vitale, I., Jemaá, M., Harper, F., Pierron, G., Castedo, M., and Kroemer, G., Autophagic removal of micronuclei, Cell Cycle, 2012, vol. 11, p. 170. https://doi.org/10.4161/cc.11.1.18564

    Article  CAS  PubMed  Google Scholar 

  30. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J. Biol. Chem., 1998, vol. 273, p. 5858. https://doi.org/10.1074/jbc.273.10.5858

    Article  CAS  PubMed  Google Scholar 

  31. Stephens, P.J., Greenman, C.D., Fu, B., Yang, F., Bignell, G.R., Mudie, L.J., Pleasance, E.D., Lau, K.W., Beare, D., Stebbings, L.A., McLaren, S., Lin, M.-L., McBride, D.J., Varela, I., Nik-Zainal, S., Leroy, C., et al., Massive genomic rearrangement acquired in a single catastrophic event during cancer development, Cell, 2011, vol. 144, p. 24. https://doi.org/10.1016/j.cell.2010.11.055

    Article  CAS  Google Scholar 

  32. Thompson, S.L., Duane, A., and Compton, D.A., Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors, Proc. Natl. Acad. Sci. U. S. A., vol. 108, p. 17974. https://doi.org/10.1073/pnas.1109720108

  33. Tripathi, D.N., Chowdhury, R., Trudel, L.J., Tee, A.R., Slack, R.S., Walker, C.L., and Wogan, G.N., Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, E2950.https://doi.org/10.1073/pnas.1307736110

  34. Vanzo, R., Bartkova, J., Merchut-Maya, J.M., Hall, A., Bouchal, J., Dyrskjøt, L., Frankel, L.B., Gorgoulis, V., Maya-Mendoza, A., Jäättelä, M., and Bartek, J., Autophagy role(s) in response to oncogenes and DNA replication stress, Cell Death Differ., 2020, vol. 27, p. 1134. https://doi.org/10.1038/s41418-019-0403-9

    Article  CAS  PubMed  Google Scholar 

  35. Yartseva, N.M., Chitikova, Z.V., Bykova, T.V., Zubova, S.G., Kochetkova, E.U, Pospelov, V.A., and Pospelova, T.V., Alterations of karyotype in irradiated apoptosis-resistant HindIIIG cells after prolonged cultivation, Tsitologiia, 2020, vol. 62, no. 12, p. 880.

    Article  Google Scholar 

  36. Zhang, C.-Z., Leibowitz, M.L., and Pellman, D., Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements, Genes Dev., 2013, vol. 27, p. 2513. https://doi.org/10.1101/gad.229559.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, C.-Z., Spektor, A., Cornils, H., Francis, J.M., Jackson, E.K., Liu, S., Meyerson, M., and Pellman, D., Chromothripsis from DNA damage in micronuclei, Nature, 2015, vol. 522, pp. 179–184. https://doi.org/10.1038/nature14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by budgetary funding of Institute of Cytology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. Chitikova.

Ethics declarations

The authors declare no conflict of interests.

The authors did not perform experiments with animals or humans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitikova, Z.V., Yartseva, N.M., Bykova, T.V. et al. Establishment of HindIIIG-1 Cell Line, Obtained after Irradiation of HindIIIG Cells Resistant to Apoptosis, Characterizes by Genomic Instability, Altered DNA Repair Mechanisms and Activation of Autophagy. Cell Tiss. Biol. 15, 370–380 (2021). https://doi.org/10.1134/S1990519X2104009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X2104009X

Keywords:

Navigation