Skip to main content
Log in

Karyotypic Changes of Apoptosis-Resistant Rat Cells HindIIIG during Prolonged Cultivation after Exposure to Ionizing Irradiation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Genome instability manifested by multiple reorganization contributes to the acquisition of new properties by tumor cells, resistance to therapy in particular. Structural rearrangements of chromosomes can be induced by damage to DNA, for example, by ionizing radiation. In this study, changes in the karyotype of the pseudodiploid cell line HindIIIG-1 obtained after irradiation of apoptosis-resistant transformed rat cells HindIIIG have been examined. The HindIIIG-1 line is a result of polyploidization associated with the cell cycle block in the G2/M phase and subsequent depolyploidization. The original HindIIIG line, before irradiation, was represented mainly by a pseudodiploid population with the normal number of 42 chromosomes, tetraploid fraction composed of 14%. The cell karyotype had two numerical and one specific structural rearrangement of chromosomes (SRCs), der(14). Irradiation induced polyploidization and multiple fragmentations of chromosomes. In the process of cultivation, a pseudodiploid population of cells with the karyotype similar to the karyotype of nonirradiated cells began to predominate, but the number of clonal and nonclonal SRCs increased. At late passages, the karyotype of HindIIIG-1 cells again became identical to the karyotype of cells before irradiation and did not contain new clonal SRCs. The role of nonclonal and clonal SRCs in the process of survival of irradiated cells and the formation of new cell populations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. An International System for Human Cytogenetic Nomenclature, Shaffer, Slovak, M.L. and Cambell, L.G., Eds., Basel: S. Karger, 2009.

    Google Scholar 

  2. Chitikova, Z.V., Gordeev, S.A., Bykova, T.V., Zubova, S.G., Pospelov, V.A., and Pospelova, T.V., Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers, Cell Cycle, 2014, vol. 13, p. 1424. https://doi.org/10.4161/cc.28402

    Article  CAS  PubMed  Google Scholar 

  3. Crasta, K., Ganem, N.J., Dagher, R., Lantermann, A.B., Ivanova, E.V., Pan, Y., Nezi, L., Protopopov, A., Chowdhury, D., and Pellma, B., DNA breaks and chromosome pulverization from errors in mitosis, Nature, 2012, vol. 482, p. 53. https://doi.org/10.1038/nature10802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frias, S., Ramos, S., Salas, C., Molina, B., and Rivera-Luna, S.S.R., Nonclonal chromosome aberrations and genome chaos in somatic and germ cells from patients and survivors of Hodgkin lymphoma, Genes, 2019, vol. 10, p. 1. https://doi.org/10.3390/genes10010037

    Article  CAS  Google Scholar 

  5. Grummt, I., The Nucleolus—guardian of cellular homeostasis and genome integrity, Chromosoma, 2013, vol. 122, p. 487.

    Article  CAS  Google Scholar 

  6. Han, J., Sabbatini, P., Perez, D., Rao, L., Modha, D., and White, E., The E1B 19K protein blocks apoptosis by interacting with and inhibiting the P53-inducible and death-promoting Bax protein, Genes Dev., 1996, vol. 10, p. 461. https://doi.org/10.1101/gad.10.4.461

    Article  CAS  PubMed  Google Scholar 

  7. Heng, H.H.Q., Regan, S, M., Liu, G., and Ye, C.J., Why it is crucial to analyze non-clonal chromosome aberrations or NCCAs?, Mol. Cytogenet., 2016, vol. 9, p. 15.

    Article  Google Scholar 

  8. Heng, H.H., Horne, S.D., Chaudhry, S., Regan, S.M., Liu, G., Abdallah, B.Y., and Ye, C.J., A postgenomic perspective on molecular cytogenetics, Curr. Genomics, 2018, vol. 19, p. 227.

    Article  CAS  Google Scholar 

  9. Howell, W. and Black, D.A., Controller silver staining of nucleolus organizer regions with protective colloidal developer: a one-step method, Experientia, 1980, vol. 36, p. 1014.

    Article  CAS  Google Scholar 

  10. Jeggo, P.A. and Löbrich, M., Radiation-induced DNA damage responses, Radiat. Prot. Dosimetry, 2006, vol. 122, p. 124.

    Article  Google Scholar 

  11. Kakarougkas, A., Ismail, A., Chambers, A.L., Riballo, E., Herbert, A.D., Künzel, J., Löbrich, M., Jeggo, P.A., and Downs, J.A., Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin, Mol. Cell, 2014, vol. 55, p. 723.

    Article  CAS  Google Scholar 

  12. Liu, G., Stevens, J.B., Horne, S.D., Abdallah, B.Y., Ye, K.J., Bremer, S.W., Ye, C, J., Chen, D.J., and Heng, H.H., Genome chaos, survival strategy during crisis, Cell Cycle, 2014, vol. 13, p. 528. https://doi.org/10.4161/cc.27378

    Article  CAS  PubMed  Google Scholar 

  13. Ly, P. and Cleveland, D.W., Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis, Trends Cell Biol., 2017, vol. 27, p. 917. https://doi.org/10.1016/j.tcb.2017.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mamaeva, S.E., Regularities of cell karyotypic evolution in culture, Tsitologiia, 1996, vol. 38, p. 787.

    CAS  PubMed  Google Scholar 

  15. Mamaeva, S.E., Chromosomes of human permanent cell lines, in Atlas khromosom postoyannykh kletochnykh liny cheloveka i zhivotnykh (Atlas of Chromosomes of Human and Animal Cell Lines), Moscow: Nauchnyi Mir, 2002, p. 36.

  16. Mardin, B.R., Drainas, A.P., Waszak, S.M., Weischenfeldt, J., Isokane, M., Stütz, A, M., Raeder, B., Efthymiopoulos, T., Buccitelli, C., Segura-Wang, M., Northcott, P., Pfister, S.M., Lichter, P., Ellenberg, J., and Korbel1, J.O., A cell-based model system links chromothripsis with hyperploidy, Mol. Syst. Biol., 2015, vol. 11, p. 828. https://doi.org/10.15252/msb.20156505

    Article  CAS  PubMed  Google Scholar 

  17. Mitelman, F., Recurrent chromosome aberrations in cancer, Mutat. Res., 2000, vol. 462, p. 247.

    Article  CAS  Google Scholar 

  18. Mitelman, F., Johansson, B., and Mertens, F., The impact of translocations and gene fusions on cancer causation, Nat. Rev. Cancer, 2007, vol. 7, p. 233.

    Article  CAS  Google Scholar 

  19. Ohgaki, H. and Kleihues, P., Genetic alterations and signaling pathways in the evolution of gliomas, Cancer Sci., 2009, vol. 100, p. 2235.

    Article  CAS  Google Scholar 

  20. Orsolic, I., Jurada, D., Pullen, N., Oren, M., Eliopoulos, A.G., and Volarevic, S., The Relationship between the nucleolus and cancer: current evidence and emerging paradigms, Semin. Cancer Biol., 2015. pii: S1044-579X(15)30004-3. https://doi.org/10.1016/j.semcancer.2015.12.004

  21. Ozkinay, C. and Mitelman, F., A simple trypsin–Giemsa technique producing simultaneous G- and C-banding in human chromosomes, Hereditas, 1979, vol. 90, p. 1.

    Article  CAS  Google Scholar 

  22. Pellestor, F.C., Chromoanagenesis: cataclysms behind complex chromosomal rearrangements, Mol. Cytogenet., 2019, vol. 12, p. 6. https://doi.org/10.1186/s13039-019-0415-7

    Article  PubMed  Google Scholar 

  23. Polyanskaya, G.G., Abramyaqn, D.S., and Glebov, O.K., The karyotypic structure of clonal population of Chinese hamster cells during a prolonged cultivation, Tsitologiia, 1981, vol. 23, p. 818.

    Google Scholar 

  24. Satoh, H., Yoshida, M.S., and Sasaki, M., Resolution chromosome banding in the Norway rat, Rattus norvegicus, Cytogenet. Cell Genet., 1989, vol. 50, p. 151.

    Article  CAS  Google Scholar 

  25. Tuna, M., Knuutila, S., and Mills, G.B., Uniparental disomy in cancer, Trends Mol. Med., 2009, vol. 15, p. 120.

    Article  CAS  Google Scholar 

  26. Yartseva, N.M., Fedortseva, R.F., and Artsybasheva, I.V., Chromosomal rearrangements and their effects in spontaneous immortalization and transformation of rat embryo cells in vivo, Tsitologiia, 2007, vol. 49, p. 311.

    Google Scholar 

  27. Yartseva, N.M., Bykova, T.V., Zubova, S.G., Pospelov, V.A., and Pospelova, T.V., Chromosomal instability and evolution of transformed phenotypein cell lines selected from senescent rat embryonic fibroblasts with rapamycin, Cell Tissue Biol., 2019, vol. 13, p. 18. https://doi.org/10.1134/S1990519X19010103

    Article  Google Scholar 

  28. Ye, C.J., Regan, S., Liu, G., Alemara, S., and H.Heng, H., Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems, Mol. Cytogenet., 2018, vol. 11, p. 31. https://doi.org/10.1186/s13039-018-0376-2

    Article  CAS  PubMed  Google Scholar 

  29. Ye, C.J., Sharpe, Z., Alemara, S., Mackenzie, S., Liu, G., Abdallah, B., Horne, S., Regan, S., and Heng, H.H., Micronuclei and genome chaos: changing the system inheritance, Genes, 2019, vol. 10, p. 366. https://doi.org/10.3390/genes10050366

    Article  CAS  PubMed Central  Google Scholar 

  30. Zhang, C.Z., Spektor, A., Cornils, H., Francis, J.M., Jackson, E, K., Liu, S., Meyerson, M., and Pellman, D., Chromothripsis from DNA damage in micronuclei, Nature, 2015, vol. 522, p. 179. https://doi.org/10.1038/nature14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out thanks to budgetary funding on a planned theme of the Institute of Cytology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Yartseva.

Ethics declarations

The authors declare that they have no conflict of interest.

This study did not performed experiments with animals or human beings.

Additional information

Abbreviations: ARG—amplification of ribosomal genes DSBs—double-strand breaks; SRC—structural rearrangement of chromosomes; NC—number of chromosome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yartseva, N.M., Shitikova, Z.V., Bykova, T.V. et al. Karyotypic Changes of Apoptosis-Resistant Rat Cells HindIIIG during Prolonged Cultivation after Exposure to Ionizing Irradiation. Cell Tiss. Biol. 15, 248–259 (2021). https://doi.org/10.1134/S1990519X21030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21030135

Keywords:

Navigation