Skip to main content
Log in

Expression of Parvalbumin and β-III-Tubulin in Cells of the Subventricular Zone during the Neonatal Period in Rats

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The aim of this work was to detect the immunohistochemical calcium- binding protein parvalbumin and marker of neural stem cell differentiation β‑III‑tubulin in the cells of the subventricular zone during the neonatal period in rats (five and ten postnatal days). It is shown that, in the subventricular zone, there are cells expressing β-III-tubulin, which are represented by one morphological cell type and are immature differentiating neuroblasts (type A). The number of such cells remains constant during the neonatal period and accounts for more than 30% of the total number of cells in the subventricular zone. It was revealed that a significant part of differentiating neuroblasts express parvalbumin. The number of such cells is more than 20% of the total number of cells of all types and is constant during the neonatal period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Anderson, D.J., Stem cells and pattern formation in the nervous system: the possible versus the actual, Neuron, 2001, vol. 30, p. 19.

    Article  CAS  Google Scholar 

  2. Bolteus, A.J. and Bordey, A., GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone, J. Neurosci., 2004, vol. 24, p. 7623.

    Article  CAS  Google Scholar 

  3. Conover, J.R. and Notti, Q., The neural stem cell niche, Cell Tiss. Res., 2008, vol. 331, p. 211.

    Article  Google Scholar 

  4. Gabbott, P.L.A. and Bacon, S.J., Local circuit neurons in the medial prefrontal cortex (areas 24 a, b, c, 25, 32) in the monkey, 1. Cell morphology and morphometrics, J. Comp. Neurol., 1996, vol. 364, p. 567.

    Article  CAS  Google Scholar 

  5. Inta, I.D., Alfonso, .J, von, Engelhardt, J., Kreuzberg, M.M., Meyer, A.H., van, Hooft, J.A, and Monyer, H., Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 209949.https://doi.org/10.1073/pnas.0807059105

    Article  Google Scholar 

  6. Kay, R.B., and Brunjes, P.C., Diversity among principal and GABAergic neurons of the anterior olfactory nucleus, Front. Cell Neurosci., 2014, vol. 8, p. 111.

    Article  Google Scholar 

  7. Korzhevsky, D.E., Petrova, E.S., and Kirik, O.V., Neuronal the markers used at studying of a differentiation of stem cells, Klet. Transplantol. Tkan. Inzh., 2010, vol. 5, no. 3, p. 1.

    Google Scholar 

  8. Liu, H.H. and Brady, S.T., CAMP, tubulin, axonal transport and regeneration, Exp. Neurol., 2004, vol. 189, p. 199. https://doi.org/10.1016/j.expneurol.2004.06,006

    Article  CAS  PubMed  Google Scholar 

  9. Merkle, F.T., Mirzadeh, Z., and Alvarez-Buylla, A., Mosaic organization of neural stem cells in the adult brain, Science, 2007, vol. 317, p. 381.

    Article  CAS  Google Scholar 

  10. Ming, G. and Song, H., Adult neurogenesis in the mammalian brain, significant answers and significant questions, Neuron, 2011, vol. 70, p. 687.

    Article  CAS  Google Scholar 

  11. Mu, Y., Lee, S.W., and Gate, F., Signaling in adult neurogenesis, Curr. Opin. Neurobiol., 2010, vol. 20, p. 416.

    Article  CAS  Google Scholar 

  12. Obukhov, D.K., Tsehmistrenko, T.A., Puschhina, E.V., and Varaksin, A.A., The formation of population of neurons and glia in the pre- and postnatal development of the CNS of vertebrates, Morfologiia, 2019, vol. 156, no. 6, p. 57.

    Google Scholar 

  13. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, London: Press, 1998.

    Google Scholar 

  14. Platel, J.-C., Stamboulian, S., Nguyen, I., and Bordey, A., Neurotransmitter signaling in postnatal neurogenesis: the first leg, Brain Res. Rev., 2010, vol. 63, p. 60.https://doi.org/10.1016/j.brainresrev.2010.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scheffler, B., Walton, N.M., Lin, D.D., Goetz, A.K., Enikolopov, G., Roper, S.N., and Steindler, D.A., Phenotypic and functional characterization of adult brain neuropoiesis, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, p. 9353.

    Article  CAS  Google Scholar 

  16. Schuurmans, C., Armant, O., Nieto, M., Stenman, J.M., Britz, O., Klenin, N., Brown, C., Langevin, L.-M., Steibt, J., Tang, H., Cunningham, J.M., Dyck, R., Walsh, C., Campbell, K., Polleux, F., and Guillemot, F., Sequential phases of cortical specification involve neurogenin-dependent and -independent pathways, EMBO J., 2004, vol. 23, p. 2892.

    Article  CAS  Google Scholar 

  17. Sequerra, E.B., Gardino, P., Hedin-Pereira, C., and de Mello, F.G., Putrescine as an important source of GABA in the postnatal rat subventricular zone, Neuroscience, 2007, vol. 146, p. 489.https://doi.org/10.1016/j.neuroscience.2007.01.062

    Article  CAS  PubMed  Google Scholar 

  18. Sequerra, E.B., Miyakoshi, L.M., Froґes, M.M., Menezes, J.R.L., and Hedin-Pereira, C., Generation of glutamatergic neurons from postnatal and adult subventricular zone with pyramidal-like morphology, Cereb. Cortex, 2010, vol. 20, p. 2583.

    Article  Google Scholar 

  19. Zaitsev, A.V., Gonzales-Burgos, G., Povysheva, N.V., Kroner, S., Lewis, D.A., and Krimer, L.S., Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons in monkey prefrontal cortex, Cereb. Cortex, 2005, vol. 15, p. 1178.

    Article  CAS  Google Scholar 

  20. Zinchenko, V.P., Turovskaya, M.V., Teplov, I.Yu., Berezhnov, A.V., and Turovsky, E.A., A role of parvalbumin-containing interneurons in regulation of spontaneous synchronous activity of the brain neurons in culture, Biophysics (Moscow), 2016, vol. 61, no. 1, p. 102.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 20-015-00052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Khozhai.

Ethics declarations

Conflict of interest. The author declares that he has no conflict of interest.

Statement on the welfare of animals. All procedures with animals were carried out in accordance with the “Rules for Working with Experimental Animals” and in compliance with the requirements of the Council of the European Community (86/609/EEC) on the use of laboratory animals. Experimental protocols were approved by the Commission for the Humane Treatment of Animals of the Pavlov Institute of Physiology, Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khozhai, L.I. Expression of Parvalbumin and β-III-Tubulin in Cells of the Subventricular Zone during the Neonatal Period in Rats. Cell Tiss. Biol. 15, 287–292 (2021). https://doi.org/10.1134/S1990519X21030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21030056

Keywords:

Navigation