Skip to main content
Log in

Biocompatibility of Polycaprolactone Scaffold Providing Targeting Delivery of Alkaline Phosphatase

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The gene for alkaline phosphatase is expressed at the earliest stages of osteogenesis thus determining the prospects for targeted delivery of this enzyme to stimulate the reparative processes of bone tissue using scaffolds. This study aimed at assessing the biocompatibility of polycaprolactone scaffolds mineralized with vaterite for targeted delivery of alkaline phosphatase in white rats. Using subcutaneous implantation tests, it has been found that polycaprolactone/vaterite scaffolds containing alkaline phosphatase do not cause an evident inflammatory response, are actively vascularized, and are populated by connective tissue elements. This shows that they are promising for stimulation of bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abe, T, Abe, Y, Aida, Y, Hara, Y, and Maeda, K., Extracellular matrix regulates induction of alkaline phosphatase expression by ascorbic acid in human fibroblasts, J. Cell. Physiol., 2001, vol. 189, p. 144.

    Article  CAS  Google Scholar 

  2. Cheung, H.Y., Lau, K.T., Lu, T.-P., and Hui, D., A critical review on polymer-based bio-engineered materials for scaffold development, Composites, B: Eng., 2007, vol. 38, p. 291.

    Google Scholar 

  3. Ivanov, A.N., Kozadaev, M.N., Belova, S.V., Blinnikova, V.V., Mamonova, I.A., Puchinyan, D.M., Fedonnikov, A.C., and Norkin, I.A., Comparative analysis of perfusion and dynamics of acute-phase markers of inflammatory response after polycaprolactone hydroxyapatite matrix implantation, Sovrem. Probl. Nauki Obraz., 2016a, vol. 4, p. 15.

    Google Scholar 

  4. Ivanov, A.N., Puchinyan, D.M., and Norkin, I.A., The role of endothelial cells in angiogenesis, Usp. Sovrem. Biol., 2016b, vol. 136, no. 5, p. 491.

    Google Scholar 

  5. Ivanov, A.N., Kurtukova, M.O., Kozadaev, M.N., Tyapkina, D.A., Kustodov, S.V., Savelyeva, M.S., Bugaeva, I.O., Parakhonsky, B.V., Galashina, E.A., Gladkova, E.V., and Norkin, I.A., Assessment of biocompatibility of polycaprolactone matrices mineralized by vaterite in subcutaneous implantation tests in white rats, Sarat. Nauchno-Med. Zh., 2018, vol. 14, no. 3, p. 451.

  6. Ivanov, A.N., Kurtukova, M.O., Kozadaev, M.N., Surovtseva, K.A., Saveleva, M.S., Bugaeva, I.O., Parakhon-skiy, B.V., Blinnikova, V.V., Gladkova, E.V., Babushki-na, I.V., Chibrikova, U.A., and Norkin, I.A., The effect of local changes in ionic and enzymatic homeostasis induced by polycaprolactone scaffolds mineralized with vaterite on bone tissue regeneration, Patol. Fiziol. Eksp. Ter., 2019, vol. 63, no. 3, p. 81.

    Google Scholar 

  7. Jafary, F., Hanachi, P., and Gorjipour, K., Osteoblast differentiation on collagen scaffold with immobilized alkaline phosphatase, Int. J. Organ Transplant. Med., 2017, vol. 8, p. 195.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. James, R., Meng, D., Laurencin, C.T., and Kumbar, S.G., Nanocomposites and bone Regeneration, Front. Mater. Sci., 2011, vol. 5, p. 342.

    Article  Google Scholar 

  9. Mota, A., Silva, P., Neves, D., Lemos, C., Calhau, C., Torres, D., Martel, F., Fraga, H., Ribeiro, L., Alçada, M.N.M.P., Pinho, M.J., Negrão, M.R., Pedrosa, R., Guerreiro, S., Guimarães, J.T., et, al., Characterization of rat heart alkaline phosphatase isoenzymes and modulation of activity, Braz. J. Med. Biol. Res., 2008, vol. 41, p. 600.

    Article  CAS  Google Scholar 

  10. Norkin, I.A., Ivanov, A.N., Kurtukova, M.O., Savelyeva, M.S., Martyukova, A.V., Gorin, D.A., and Parakhonsky, B.V., Features of microcirculatory reactions during subcutaneous implantation of polycaprolactone matrices mineralized with vaterite, Sarat. Nauchno-Med. Zh., 2018, vol. 14, no. 1, p. 35.

  11. Osathanon, T., Giachelli, C.M., and Somerman, M.J., Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering, Biomaterials, 2009, vol. 30, p. 4513.

    Article  CAS  Google Scholar 

  12. Sabir, M.I., Xu, X., and Li, L., A review on biodegradable polymeric materials for bone tissue engineering applications, J. Mater. Sci., 2009, vol. 44, p. 5713.

    Article  CAS  Google Scholar 

  13. Sadovoi, M.A., Larionov, P.M., Samokhin, A.G., and Rozhnova, O.M., Cellular matrices (scaffolds) for bone regeneration: the current state of the problem, Khir. Pozvonochnika, 2014, vol. 2, p. 79.

    Google Scholar 

  14. Santos, V.R., Gomes, R.T., Resendec, M., Almeidad, O.P., and Colletad, R.D., Isolation and characterization of gingival fibroblasts positive for alkaline phosphatase in patients with chronic periodontitis and drug-induced gingival hyperplasia, Rev. Odonto Ciênc., 2010, vol. 25, p. 54.

    Article  Google Scholar 

  15. Saveleva, M.S., Atkin, V.S., Lyubun, G.P., Gorin, D.A., Skirtach, A.G., Parakhonskiy, B.V., Ivanov, A.N., Fedonnikov, A.S., Norkin, I.A., Kurtukova, M.O., Martyuko-va, A.V., Cherevko, E.I., Sargsyan, A.K., and Ivanova, A.G., Hybrid PCL/CACO3 scaffolds with capabilities of carrying biologically active molecules: synthesis, loading and in vivo applications, Mater. Sci. Eng., 2018, vol. 85, p. 57.

    Article  CAS  Google Scholar 

  16. Schroeder, R., Besch, L., Pohlit, H., Panthoefer, M., Roth, W., Frey, H., Tremel, W., and Unger, R., Particles of vaterite, a metastable CaCO3 polymorph, exhibit high biocompatibility for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid bone regeneration, J. Tiss. Eng. Regen. Med., 2018, vol. 12, p. 1754.

    Article  CAS  Google Scholar 

  17. Shchanitsyn, I.N., Ivanov, A.N., Ulyanov, V.Yu., and Norkin, I.A., Modern concepts of stimulating bone tissue regeneration using biologically active scaffolds. Tsitologiia, 2019, vol. 61, no. 1, p. 16.

    Article  Google Scholar 

  18. Sroga, G.E. and Vashishth, D., Effects of bone matrix proteins on fracture and fragility in osteoporosis, Biophys. Chem., 2005, vol. 257, p. 2432.

    Google Scholar 

Download references

Funding

This work was carried out within the framework of a state assignment to Saratov State Medical University Named after V.I. Razumovsky, Ministry of Health of the Russian Federation, “Development of Technology for Assessing the Regenerative Potential of Matrices for Replacing Bone Defects Based on the Parameters of Their Vascularization,” registration no. AAAA-A18-118020290178-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ivanov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of int-erest

Statement on the welfare of animals. This study was conducted in accordance with the ethical principles of the Declaration of Helsinki concerning animal welfare and the recommendations of the Ethics Committee of Razumovsky Saratov State Medical University of the Ministry of Health of the Russian Federation, protocol no. 6 dated February 6, 2018.

Additional information

Abbreviations: VT—vaterite, IL-1—interleukin-1-β; IFA—immunofluorescence assay, PCL—polycaprolactone, TNF—tumor necrosis factor α, ALP—alkaline phosphatase, VEGF—vascular endothelial growth factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.N., Chibrikova, Y.A., Saveleva, M.S. et al. Biocompatibility of Polycaprolactone Scaffold Providing Targeting Delivery of Alkaline Phosphatase. Cell Tiss. Biol. 15, 301–309 (2021). https://doi.org/10.1134/S1990519X21030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21030044

Keywords:

Navigation