Skip to main content
Log in

Ca2+-Permeable Canonical TRP Channels in Mouse m. LAL Muscle Fibers

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

It has been shown by fluorescence microscopy that membranes of mouse skeletal muscle fibers contain canonical TRP channels (TRPCs) of four subfamilies, including seven known classified subtypes. In the area of the neuromuscular junction the most represented are TRPC5 channels and the least are TRPC2 channels. Some subtypes of TRPC channels (1, 3, 4, and 5) are closely associated with the membranes of the sarcoplasmic reticulum of muscle fibers, with TRPC5 channels being the most represented in these structures. There is no local concentration of TRPC channels of all subtypes (1–7) exclusively in the area of neuromuscular junction, which does not support the hypothesis of a possible neurotrophic control over the distribution of channels of this family in the muscle fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Albuquerque, E.X., and McIsaac, R.J., Fast and slow mammalian muscles after denervation, Exp. Neurol., 1970, vol. 26, p. 183.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Qusairi, L. and Laporte, J., T-Tubule biogenesis and triad formation in skeletal muscle and implication in human diseases, Skelet. Muscle, 2011, vol. 1, p. 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bailey, S.J., Stocksley, M.A., Buckel, A., Young, C., and Slater, C.R., Voltage-gated sodium channels and ankyrin G occupy a different postsynaptic domain from acetylcholine receptors from an early stage of neuromuscular junction maturation in rats, J. Neurosci., 2003, vol. 23, p. 2102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beam, K.G., Caldwell, J.H., and Campbell, D.T., Na channels in skeletal muscle concentrated near the neuromuscular junction, Nature, 1985, vol. 313, p. 588.

    Article  CAS  PubMed  Google Scholar 

  5. Brenner, H.R. and Sakmann, B., Neurotrophic control of channel properties at neuromuscular synapses of rat muscle, J. Physiol., 1983, vol. 337, p. 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brinkmeier, H., TRP channels in skeletal muscle: gene expression, function and implications for disease, Adv. Exp. Med. Biol., 2011, vol. 704, p. 749.

    Article  CAS  PubMed  Google Scholar 

  7. Caldwell, J.H. and Milton, R.L., Sodium channel distribution in normal and denervated rodent and snake skeletal muscle, J. Physiol., 1988, vol. 401, p. 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caldwell, J.H., Campbell, D.T., and Beam, K.G., Na channel distribution in vertebrate skeletal muscle, J. Gen. Physiol., 1986, vol. 87, p. 907.

    Article  CAS  PubMed  Google Scholar 

  9. Fambrough, D.M., Control of acetylcholine receptors in skeletal muscle, Physiol. Res., 1979, vol. 59, p. 165.

    CAS  Google Scholar 

  10. Feske, S., CRAC channelopathies, Pflugers Arch., 2010, vol. 460, p. 417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flucher, B.E., Andrews, S.B., and Daniels, M.P., Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation–contraction coupling in skeletal muscle, Mol. Biol. Cell, 1994, vol. 5, p. 1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franco-Obregón, A., Jr. and Lansman, J.B., Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice, J. Physiol., 1994, vol. 481, p. 299.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guzzini, M., Raffa, S., Geuna, S., Nicolino, S., Torrisi, M.R., Tos, P., Battiston, B., Grassi, F., and Ferretti, A., Denervation-related changes in acetylcholine receptor density and distribution in the rat flexor digitorum sublimis muscle, Ital. J. Anat. Embryol., 2008, vol. 113, p. 209.

    PubMed  Google Scholar 

  14. Halaszovich, C.R., Zitt, C., Jungling, E., and Luckhoff, A., Inhibition of TRP3 channels by lanthanides, block from the cytosolic side of the plasma membrane, J. Biol. Chem., 2000, vol. 275, p. 37423.

    Article  CAS  PubMed  Google Scholar 

  15. Hofmann, T., Obukhov, A.G., Schaefer, M., Harteneck, C., Gudermann, T., and Schultz, G., Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol, Nature, 1999, vol. 397, p. 259.

    Article  CAS  PubMed  Google Scholar 

  16. Kalwa, H., Storch, U., Demleitner, J., Fiedler, S., Mayer, T., Kannler, M., Fahlbusch, M., Barth, H., Smrcka, A., Hildebrandt, F., Gudermann, T., and Dietrich, A., Phospholipase C epsilon (PLCε) induced TRPC6 activation: a common but redundant mechanism in primary podocytes, J. Cell. Physiol., 2015, vol. 230, p. 1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krause, M. and Wernig, A., The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog, J. Neurocytol., 1985, vol. 14, p. 765.

    Article  CAS  PubMed  Google Scholar 

  18. Krüger, J., Kunert-Keil, C., Bisping, F., and Brink-meier, H., Transient receptor potential cation channels in normal and dystrophic mdx muscle, Neuromuscul. Disord., 2008, vol. 18, p. 501.

    Article  PubMed  Google Scholar 

  19. Kunert-Keil, C., Bisping, F., Krüger, J., and Brink-meier, H., Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains, BMC Genomics, 2006, vol. 7, p. 159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Leinders-Zufall, T., Storch, U., Bleymehl, K., Mederos, Y., Schnitzler, M., Frank, J.A., Konrad, D.B., Trauner, D., Gudermann, T., and Zufall, F., PhoDAGs enable optical control of diacylglycerol-sensitive transient receptor potential channels, Cell. Chem. Biol., 2018, vol. 25, p. 215.

    Article  CAS  PubMed  Google Scholar 

  21. Lupa, M.T. and Caldwell, J.H., Effect of agrin on the distribution of acetylcholine receptors and sodium channels on adult skeletal muscle fibers in culture, J. Cell. Biol., 1991, vol. 115, p. 765.

    Article  CAS  PubMed  Google Scholar 

  22. Montell, C., The TRP superfamily of cation channels, Sci. STKE, 2005, p. re3. https://doi.org/10.1126/stke.2722005re3

  23. Montell, C., Birnbaumer, L., and Flockerzi, V., The TRP channels, a remarkably functional family, Cell, 2002, vol. 108, p. 595.

    Article  CAS  PubMed  Google Scholar 

  24. Nilius, B., Owsianik, G., Voets, T., and Peters, J.A., Transient receptor potential cation channels in disease, Physiol. Rev., 2007, vol. 87, p. 165.

    Article  CAS  PubMed  Google Scholar 

  25. Nurullin, L.F. and Volkov, E.M., Immunofluorescent identification of isoforms subunit α1 voltage-gated Ca2+ channels Cav1, Cav2 and Cav3 in cholinergic synapses zones of somatic muscles earthworm Lumbricus terrestris, Tsitologiia, 2020, vol. 62, no. 2, p. 141.

    Article  Google Scholar 

  26. Nurullin, L.F., Khuzakhmetova, V.F., Khaziev, E.F., Samigullin, D.V., Tsentsevitsky, A.N., Skorinkin, A.I., Bukharaeva, E.A., and Vagin, O., Reorganization of septins modulates synaptic transmission at neuromuscular junctions, Neuroscience, 2019, vol. 404, p. 91.

    Article  CAS  PubMed  Google Scholar 

  27. Nurullin, L.F., Mukhitov, A.R., Tsentsevytsky, A.N., Petrova, N.V., Samigullin, D.V., Malomouzh, A.I., Bukharaeva, E.A., Nikolsky, E.E., and Vyskočil, F., Voltage-dependent P/Q-type calcium channels at the frog: neuromuscular junction, Physiol. Res., 2011, vol. 60, p. 815.

    Article  CAS  PubMed  Google Scholar 

  28. Okada, T., Shimizu, S., Wakamori, M., Maeda, A., Kurosaki, T., Takada, N., Imoto, K., and Mori, Y., Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain, J. Biol. Chem., 1998, vol. 273, p. 10279.

    Article  CAS  PubMed  Google Scholar 

  29. Okada, T., Inoue, R., Yamazaki, K., Maeda, A., Kurosaki, T., Yamakuni, T., Tanaka, I., Shimizu, S., Ikenaka, K., Imoto, K., and Mori, Y., Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7, Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor, J. Biol. Chem., 1999, vol. 274, p. 27359.

    Article  CAS  PubMed  Google Scholar 

  30. Owsianik, G., D’hoedt, D., Voets, T., and Nilius, B., Structure–function relationship of the TRP channel superfamily, Rev. Physiol. Biochem. Pharmacol., 2006, vol. 156, p. 61.

    Article  CAS  PubMed  Google Scholar 

  31. Peng, G., Shi, X., and Kadowaki, T., Evolution of TRP channels inferred by their classification in diverse animal species, Mol. Phylogenet. Evol., 2015, vol. 84, p. 145.

    Article  CAS  PubMed  Google Scholar 

  32. Plant, T.D. and Schaefer, M., Receptor-operated cation channels formed by TRPC4 and TRPC5, Naunyn Schmiedebergs Arch. Pharmacol., 2005, vol. 371, p. 266.

    Article  CAS  PubMed  Google Scholar 

  33. Prakriya, M. and Lewis, R.S., Store-operated calcium channels, Physiol. Rev., 2015, vol. 95, p. 1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramsey, I.S., Delling, M., and Clapham, D.E., An introduction to TRP channels, Annu. Rev. Physiol., 2006, vol. 68, p. 619.

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer, M., Plant, T.D., Obukhov, A.G., Hofmann, T., Gudermann, T., and Schultz, G., Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5, J. Biol. Chem., 2000, vol. 275, p. 17517.

    Article  CAS  PubMed  Google Scholar 

  36. Soboloff, J., Spassova, M., Hewavitharana, T., He, L.P., Luncsford, P., Xu, W., Venkatachalam, K., van, Rossum, D., Patterson, R.L., and Gill, D.L., TRPC channels: integrators of multiple cellular signals, Handb. Exp. Pharmacol., 2007, vol. 179, p. 575.

    Article  CAS  Google Scholar 

  37. Stiber, J.A., Zhang, Z.S., Burch, J., Eu, J.P., Zhang, S., Truskey, G.A., Seth, M., Yamaguchi, N., Meissner, G., Shah, R., Worley, P.F., Williams, R.S., and Rosenberg, P.B., Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity, Mol. Cell. Biol., 2008, vol. 28, p. 2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Unwin, N., Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes, Q. Rev. Biophys., 2013, vol. 46, p. 283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vannier, B., Peyton, M., Boulay, G., Brown, D., Qin, N., Jiang, M., Zhu, X., and Birnbaumer, L., Mouse TRP2, the homologue of the human TRPC2 pseudogene, encodes MTRP2, a store depletion-activated capacitative Ca2+ entry channel, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, p. 2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vazquez, G., Wedel, B.J., Aziz, O., Trebak, M., and Putney, J.W., Jr., The mammalian TRPC cation channels, Biochim. Biophys. Acta, 2004, vol. 1742, p. 21.

    Article  CAS  PubMed  Google Scholar 

  41. Volkov, E.M., Factors in the neurotrophic control of acetylcholine reception in skeletal muscle, Usp. Fiziol. Nauk, 1989, vol. 20, no. 2, p. 27.

    Google Scholar 

  42. Volkov, E.M., Neurotrophic control of Na-permeability of muscle fiber membranes, Usp. Fiziol. Nauk, 1990, vol. 109, no. 3, p. 339.

    CAS  Google Scholar 

  43. Zanou, N., Shapovalov, G., Louis, M., Tajeddine, N., Gallo, C., Van, Schoor, M., Anguish, I., Cao, M.L., Schakman, O., Dietrich, A., Lebacq, J., Ruegg, U., Roulet, E., Birnbaumer, L., and Gailly, P., Role of TRPC1 channel in skeletal muscle function, Am. J. Physiol. Cell. Physiol., 2010, vol. 298, p. C149.

    Article  CAS  PubMed  Google Scholar 

  44. Zitt, C., Zobel, A., Obukhov, A.G., Harteneck, C., Kalkbrenner, F., Lückhoff, A., and Schultz, G., Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion, Neuron, 1996, vol. 16, p. 1189.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the Collective Spectroanalytical Center for Physical and Chemical Research of the Structure, Properties, and Composition of Substances and Materials of the Federal State Budgetary Institution of Science of the Federal Research Center of the Kazan Scientific Center of the Russian Academy of Sciences.

Funding

This work was performed within the framework of a planned theme of the Kazan State Medical University, as well as within the framework of a state assignment to the Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. F. Nurullin or E. M. Volkov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.Statement on the welfare of animals. The authors declare that all work with animals was performed in accordance with the norms of Russian legislation, as well as the recommendations of the Guide for the Care and Use of Laboratory Animals (http://www.nap.edu/openbook.php?isbn= 0309053773).

Additional information

Translated by L. Fridlyanskaya

Abbreviations: DAG—diacylglycerol, IP3—inositol-3-phosphate, SR—sarcoplasmic reticulum, ACh—acetylcholine, TMR—tetramethylrhodamine, TMR-α-BgTX—tetramethylrhodamine-α-bungarotoxin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurullin, L.F., Volkov, E.M. Ca2+-Permeable Canonical TRP Channels in Mouse m. LAL Muscle Fibers. Cell Tiss. Biol. 15, 189–198 (2021). https://doi.org/10.1134/S1990519X21020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21020048

Keywords:

Navigation