Skip to main content
Log in

Comparative Account of the Genotoxic and Antimicrobial Effects of Silver Nanoparticles Synthesized from Extract of Pleurotus Ostreatus and Chemically Synthesized Nanoparticles

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Recently, metallic nanoparticles have gained attention for its potential as antibacterial agent. However, because of the risk it poses towards environment, biologically synthesised nanoparticles have got the preference. Green synthesis of silver nanoparticles (AgNPs) from edible mushrooms are considered to be cost effective and eco-friendly. In this study, we found that biologically synthesised AgNPs from the water extracts of Pleurotus ostreatus exhibited less cytotoxic effect on mitotic chromosomes of Allium cepa root meristem, when compared to chemically synthesised AgNPs. The synthetic AgNPs possesses high genotoxic effect including spindle disruption, sticky metaphase chromosomes, multipolarity, early and late anaphase etc. Results also prove that these biologically synthesised AgNPs possess better antimicrobial properties than the chemically synthesized one against both the gram-positive (Bacillus, Staphylococcus) and the gram-negative bacteria (Escherichia coli, Klebsiella).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.
Fig 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Babu, K., Deepa, M.A., Gokul, Shankar S. and Rai, S., Effect of nano-silver on cell division and mitotic chromosomes: a Prefatory Siren, Internet J. Nanotechnol., 2008, vol. 2, p. 2.

    Google Scholar 

  2. Bano, Z., Srinivasan, K.S., and Srivastava, H.C., Amino acid composition of the protein from a mushroom (Pleurotus sp.), Appl. Microbiol., 1963, vol. 11, pp.184–187.

    Article  CAS  Google Scholar 

  3. Bhat, R., Deshpande, R., Ganachari, S.V., Huh, D. S., and Venkataraman, A., Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies, Bioinorg. Chem. Appl., vol. 2011, article ID 650979. https://doi.org/10.1155/2011/650979

  4. Bhat, R., Ganachari, S.V., Deshpande, R., Abbaroju, V., Shetti, U., and Sanjeev, G., Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation, J. Photoch. Photobio. B, 2013, vol. 125, pp. 63–69. https://doi.org/10.1016/j.jphotobiol.2013.05.002

    Article  CAS  Google Scholar 

  5. Cabrera, G.L. and Rodriguez, D.M., Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays, Mutat. Res., 1999, vol., 426, pp. 211–214.

    Article  CAS  Google Scholar 

  6. Darlington, C.D. and McLeish, J., Action of maleic hydrazide on the cell, Nature, 1951, vol. 167, pp. 407–408.

    Article  CAS  Google Scholar 

  7. Desai, R., Venu, M., Sanjeev, K.G., and Prafulla, K.J., Size distribution of silver nanoparticles: UV-visible spectroscopic assessment, Nanosci. Nanotechnol., 2012, vol. 4, pp. 30–34.

    CAS  Google Scholar 

  8. Donda, M.R., Kudle, K.R., Alwala, J., Miryala, A., Sreedhar B., and Rudra, M.P., Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity, Int. Curr. Sci., 2013, vol. 7, pp. 1–8.

    Google Scholar 

  9. Fiskesjo, G., The Allium test as a standard in environmental monitoring, Hereditas, 1985, vol. 102, pp. 99–112.

    Article  CAS  Google Scholar 

  10. Fiskesjo, G., Allium test for screening chemicals; evaluation of cytologic parameters, in Plants for Environmental Studies, New York: CRC Press, Boca Raton (Lewis Publishers), 1997, p. 308.

  11. Gautam, A., Ray, A., Mukherjee, S., Das, S., Pal, K., Karmakar, P., Ray, M., and Ray, S., Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm, Ecotoxicol. Environ. Saf., 2018, vol. 148, pp. 620–631.

    Article  CAS  Google Scholar 

  12. Gudikandula, K. and Maringanti, S. C., Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties, J. Exp. Nanosci., 2016, vol. 11, pp. 1–8.

    Article  Google Scholar 

  13. Kaegi, R., Sinnnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M. and Burkhardt, M., Release of silver nanoparticles from outdoor facades, Environ. Pollut., 2010, vol. 158, pp. 2900–2905.

    Article  CAS  Google Scholar 

  14. Kumari, M., Mukherjee, A. N., and Chandrasekaran, Genotoxicity of silver nanoparticles in Allium cepa, Sci. Total Environ., 2009, vol. 407, pp. 5243–5246.

    Article  CAS  Google Scholar 

  15. Kvítek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., and Zbořil, R., Effect of surfactants and polymers on stability and antibacterial activity of nanoparticles (Nps), J. Phys. Chem. C, 2008, vol. 112, pp. 5825–5834.

    Article  Google Scholar 

  16. Mohammed, A.E., Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract., Asian Pac. J. Trop. Biomed., 2015, vol. 5, pp. 382–386.

    Article  CAS  Google Scholar 

  17. Narasimha, G., Praveen, B., Mallikarjuna, K., and Raju, B.D.P., Mushrooms (Agaricus bisporus) mediated biosynthesis of silver nanoparticles, characterization and their antimicrobial activity, Int. J. Nano Dimens., 2011, vol. 2, pp. 29–36.

    CAS  Google Scholar 

  18. Nielsen M.H. and Rank J., Screening of toxicity and genotoxicity in wastewater using the Allium test, Hereditas, 1994, vol. 121, pp. 249–254.

    Article  CAS  Google Scholar 

  19. Patlolla, A.K., Berry, A., May, L., and Tchounwou, P.B., Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles, Int. J. Environ. Res. Public Health., 2012, vol. 9, pp. 1649–1662.

    Article  CAS  Google Scholar 

  20. Purohit, J., Chattopadhyay, A., and Singh, N.K., Green synthesis of microbial nanoparticle: Approaches to application, in Microbial Nanobionics, Natotechnology in the Life Ccience, Springer Nature Switzerland AG, 2019, pp. 35–60.

  21. Quinteros, M.A., Aristizábal, V.C., Dalmasso, P.R., Paraje, M.G., and Páez, P.L., Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity, Toxicol. in vitro, 2016, vol. 36, pp. 216–223.

    Article  CAS  Google Scholar 

  22. Rank J., and Nielsen M.H., A modified Allium test as a tool in the screening of the genotoxicity of complex mixtures, Hereditas, 1993, vol. 118, pp. 49–53.

    Article  CAS  Google Scholar 

  23. Sadowski, Z., Biosynthesis and application of silver and gold nanoparticles, in Silver Nanoparticles, Pozo Perez, D., Ed., Intech Open, 2010. https://doi.org/10.5772/8508

  24. Sadowski, Z. and Maliszewska, I., Applications of gold nanoparticles: current trends and future prospects, in Metal Nanoparticles in Microbiology, Springer, 2011, pp. 25–248. https://doi.org. https://doi.org/10.1007/978-3-642-18312-6_10

    Book  Google Scholar 

  25. Saha, N.D. and Gupta, S., Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa, J. Hazard. Mater., 2017, vol. 330, pp.18–28.

    Article  CAS  Google Scholar 

  26. Scherer, M.D., Sposito, J.C.V., Falco, W.F., Grisolia, A.B., Andrade, L.H.C., Lima, S. M., Machado, G., Nascimen-to, V.A., Gonçalves, D.A., Wender, H., Oliveira, S.L., and Caires, A.R.L., Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence, Sci. Total Environ., 2019, vol. 660, pp. 459–467.https://doi.org/10.1016/j.scitotenv.2018.12.444

    Article  CAS  PubMed  Google Scholar 

  27. Sudhakar, R., Gowda, K.N. and Venu, G., Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa, Cytologia, 2001, vol. 66, pp. 235–240.

    Article  Google Scholar 

  28. Yan, A. and Chen, Z., Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism, Int. J. Mol. Sci., 2019, vol. 20, no. 1003. https://doi.org/10.3390/ijms20051003

Download references

ACKNOWLEDGMENTS

The authors are gateful for the significant scientific guidance of Dr. Rajyasri Ghosh, Associate Professor, Scottish Church College, Kolkata, Dr. Shampa Bhattacharya, Associate Professor, Scottish Church College, Kolkata and Dr. Arup Kumar Mitra, Associate Professor, Department of Microbiology, St. Xavier’s College(Autonomous), Kolkata.

Funding

This study was funded by Post Graduate Department of Botany, Scottish Church College, Kolkata and Department of Microbiology, St. Xavier’s College (Autonomous), Kolkata. The author Bikram Dhara has received Vivekananda Merit Cum Means Scholarship from the Department of Higher Education, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram Dhara.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animal or human material as an object of investigation performed by any author.

Additional information

Abbreviations: AgNPs—silver nanoparticles, MI—mitotic index.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikram Dhara, Roy, I. & Maity, A. Comparative Account of the Genotoxic and Antimicrobial Effects of Silver Nanoparticles Synthesized from Extract of Pleurotus Ostreatus and Chemically Synthesized Nanoparticles. Cell Tiss. Biol. 15, 77–89 (2021). https://doi.org/10.1134/S1990519X21010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21010028

Keywords:

Navigation