Skip to main content

The Effect of the Geroprotectors Astragaloside IV, Cycloastragenol, and Timovial–Epivial Peptide Complex on Telomere Length and Telomerase Activity in Human Mesenchymal Stromal Cells and Senescent Fibroblasts


A search for geroprotectors that would affect the telomere length and/or telomerase activity and not exhibit tumorigenicity is under progress. The medical use of various extracts of plants from the Astragalus genus of the Fabaceae family was first described in 200 CE. However, scientific studies of the components of these extracts (cycloastragenol, astragaloside IV) have begun only recently. The goal of this work was to explore the effect of a composition consisting of astragaloside IV, cycloastragenol, and the Timovial–Epivial dipeptide and its components on telomere length and telomerase activity in human umbilical cord mesenchymal stromal cells and aging fibroblasts. Telomerase activity was determined by the telomeric repeat amplification protocol (TRAP). Telomere length was determined by measuring the intensity of fluorescence in situ hybridization signals using flow cytometry. None of the composition components caused a significant change in the determined parameters on its own. Only cycloastragenol had a negligible effect on the telomere length in fibroblasts. The combination of the key compound, astragaloside IV, aglycone of astragalosides—cycloastragenol (CAG), and biopeptide complex produced more significant changes in the telomere length and telomerase activity than did each component alone. The complex was shown to have a significant effect on telomere length and telomerase activity. Further studies are needed to determine the mechanism of the effect of the components combination on telomere length and telomerase activity.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Aizenshtadt, A.A., Enukashvily, N.I., Zolina, T.L., Alexandrov, L.V., and Smol’yaninov, A.B., Comparison of proliferation and immunophenotype of MSC obtained from bone marrow, adipose tissue, and umbilical cord, Vestn. Sev.-Zap. Gos. Med. Mechnikova, 2015, vol. 7, no. 2, pp. 14–22.

    Google Scholar 

  2. Aizenshtadt, A.A., Skazina, M.A., Kotelevskaya, E.A., Yelsukova, L.V., Zolina, T.L., Ponomartsev, N.V., Galaktionov, N.K., Galembo, I.A., Ivolgin, D.A., Maslennikova, I.I., and Enukashvily, N.I., Characterization of umbilical cord mesenchymal stromal cells during long-term expansion in vitro, Vestn. Sev.-Zap. Gos. Med. Mechnikova, 2018, vol. 10, no. 1, pp. 11–19.

    Google Scholar 

  3. Bernardes de Jesus, B., Schneeberger, K., Vera, E., Tejera, A., Harley, C.B., and Blasco, M.A., The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence, Aging Cell, 2011, vol. 10, pp. 604–621.

    Article  CAS  Google Scholar 

  4. Bernardo, M.E., Zaffaroni, N., Novara, F., Cometa, A.M., Avanzini, M.A., Moretta, A., Montagna, D., Maccario, R., Villa, R., Daidone, M.G., Zuffardi, O., and Locatelli, F., Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms, Cancer Res., 2007, vol. 67, pp. 9142–9149.

    Article  CAS  Google Scholar 

  5. Enukashvily, N., Ayzenshtadt, A., Bagaeva, V., Zolina, T., Aleksandrova, L., Supilnikova, O., and Adilov, S., The use of autologous and allogenic fibrin glues as scaffolds for mesenchymal stem cells and prechondrocytes in traumatology and orthopedics, Cytotherapy, 2016, vol. 18, pp. 60–61.

    Article  Google Scholar 

  6. Hahn W.C., and Meyerson M., Telomerase activation, cellular immortalization and cancer, Ann. Med., 2001, vol. 33, pp. 123–129.

    Article  CAS  Google Scholar 

  7. Harley, C.B., Liu, W., Blasco, M., Vera, E., Andrews, W.H., Briggs, L.A., and Raffaele, J.M., A natural product telomerase activator as part of a health maintenance program, Rejuvenation Res., 2011, vol. 14, pp. 45–56.

    Article  CAS  Google Scholar 

  8. Harley, C.B., Liu, W., Flom, P.L., and Raffaele, J.M., A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response, Rejuvenation Res., 2013, vol. 16, pp. 386–395.

    Article  CAS  Google Scholar 

  9. He, C.S., Liu, Y.C., Xu, Z.P., Dai, P.C., Chen, X.W., and Jin, D.H., Astragaloside IV enhances cisplatin chemosensitivity in non-small cell lung cancer cells through inhibition of B7-H3, Cell Physiol. Biochem., 2016, vol. 40, pp. 1221–1229.

    Article  CAS  Google Scholar 

  10. Ho, J.H., Chen, Y.F., Ma, W.H., Tseng, T.C., Chen, M.H., and Lee, O.K., Cell contact accelerates replicative senescence of human mesenchymal stem cells independent of telomere shortening and p53 activation: roles of Ras and oxidative stress, Cell Transplant., 2011, vol. 20, pp. 1209–1220.

    Article  Google Scholar 

  11. Ip, F.C., Ng, Y.P., An, H.J., Dai, Y., Pang, H.H., Hu, Y.Q., Chin, A.C., Harley, C.B., Wong Y.H., and Ip, N.Y., Cycloastragenol is a potent telomerase activator in neuronal cells: implications for depression management, Neurosignals, 2014, vol. 22, pp. 52–63.

    Article  CAS  Google Scholar 

  12. Jiang, K., Lu, Q., Li, Q., Ji, Y., Chen, W., and Xue, X., Astragaloside IV inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling, Int. Immunopharmacol., 2017, vol. 42, pp. 195–202.

    Article  CAS  Google Scholar 

  13. Khavinson, V.Kh., and Malinin, V.V., Gerontological Aspects of Genome Peptide Regulation, Basel: Karger AG, 2005.

    Book  Google Scholar 

  14. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W., Specific association of human telomerase activity with immortal cells and cancer, Science, 1994, vol. 266, pp. 2011–2015.

    Article  CAS  Google Scholar 

  15. Lafferty-Whyte, K., Cairney, C.J., Will, M.B., Serakinci, N., Daidone, M.G., Zaffaroni, N., Bilsland, A., and Keith, W.N., A gene expression signature classifying telomerase and ALT immortalization reveals an HTERT regulatory network and suggests a mesenchymal stem cell origin for ALT, Oncogene, 2009, vol. 28, pp. 3765–3774.

    Article  CAS  Google Scholar 

  16. Li, M., Li, H., Fang, F., Deng, X., and Ma, S., Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms, Neurosci. Lett., 2017, vol. 639, pp. 114–119.

    Article  CAS  Google Scholar 

  17. Liu, Y., Zhang, H.G., and Li, X.H., A Chinese herbal decoction, Danggui Buxue Tang, improves chronic fatigue syndrome induced by food restriction and forced swimming in rats, Phytother. Res., 2011, vol. 25, pp. 1825–1832.

    Article  Google Scholar 

  18. Mazzolini R., Gonzàlez, N., Garcia-Garijo, A., Millanes-Romero, A., Peiró, S., Smith, S., García de Herreros, A., and Canudas, S., Snail1 transcription factor controls telomere transcription and integrity, Nucleic Acids Res., 2018, vol. 46, pp. 146–158.

    Article  CAS  Google Scholar 

  19. Mikhelson, V.M. and Gamaley, I.A., Telomere shortening is the main mechanism of natural and radiation aging, Radiats. Biol. Radioecol., 2010, vol. 50, no. 3, pp. 269–275.

    CAS  Google Scholar 

  20. Molgora, B., Bateman, R., Sweeney, G., Finger, D., Dimler, T., Effros, R.B., and Valenzuela H.F., Functional assessment of pharmacological telomerase activators in human T cells, Cells, 2013, vol. 2, pp. 57–66.

    Article  CAS  Google Scholar 

  21. Olovnikov, A.M., A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 1973, vol. 41, no. 1, pp. 181–190.

    Article  CAS  Google Scholar 

  22. Qi, Y., Gao, F., Hou, L., and Wan, C., Anti-inflammatory and immunostimulatory activities of astragalosides, Am. J. Chin. Med., 2017, vol. 45, pp. 1157–1167.

    Article  CAS  Google Scholar 

  23. Qin, C.D., Ma, D.N., Ren, Z.G., Zhu, X.D., Wang, C.H., Wang, Y.C., Ye, B.G., Cao, M.Q., Gao, D.M., and Tang, Z.Y., Astragaloside IV inhibits metastasis in hepatoma cells through the suppression of epithelial-mesenchymal transition via the Akt/GSK-3β/β-catenin pathway, Oncol. Rep., 2017, vol. 37, pp. 1725–1735.

    Article  CAS  Google Scholar 

  24. Ren S., Zhang, H., Mu, Y., Sun, M., and Liu, P., Pharmacological effects of astragaloside IV: a literature review, J. Tradit. Chin. Med., 2013, vol. 33, pp. 413–416.

    Article  Google Scholar 

  25. Salvador, L., Singaravelu, G., Harley, C.B., Flom, P., Suram, A., and Raffaele, J.M., A natural product telomerase activator lengthens telomeres in humans: a randomized, double blind, and placebo controlled study, Rejuvenation Res., 2016, vol. 19, pp. 478–484.

    Article  CAS  Google Scholar 

  26. Savel’eva, O.M. and Bychkov, K.E., RF Patent no. 2593586, Byull. Izobret., 2016, vol. 22.

  27. Shen, C.Y., Jiang, J.G., Yang, L., Wang, D.W., and Zhu, W., Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery, Br. J. Pharmacol., 2017, vol. 174, pp. 1395–1425.

    Article  CAS  Google Scholar 

  28. The State Pharmacopoeia Commission of China. Pharmacopoeia of the People’s Republic of China, Beijing: China Medicine Science and Technology Press, vol. 1, pp. 283–284.

  29. The United States Pharmacopeial Convention: USP39–NF34, 2016.

  30. Wang, H.L., Zhou, Q.H., Xu, M.B., Zhou, X.L., and Zheng, G.Q., Astragaloside IV for experimental focal cerebral ischemia: preclinical evidence and possible mechanisms, Oxid. Med. Cell Longev., 2017, vol. 2017, pp. 1–13.

    Google Scholar 

  31. WHO Monographs on Selected Medicinal Plants, Geneva: WHO Press, 1999, vol. 1, pp. 50–58.

Download references


This work was carried out as part of a state order of the Ministry of Health of the Russian Federation (Enukashvily N.I., Skazina M.A., telomere length and telomerase activity evaluation) and with financial support from the Russian Science Foundation, project no. 19-74-20102 (Chubar A.V., cell culture work).

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. I. Enukashvily.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in the study involving human beings complied with the ethical standards of the institutional and/or national research ethics committee and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards. Informed voluntary consent was obtained from each of the participants in the study (donors of cells- , cultured MSC, and HF).

Additional information

Translated by I. Fridlyanskaya

Abbreviations: DMSO—dimethyl sulfoxide, MSC UC—mesenchymal stromal cell of umbilical cord, HF—human fibroblast, CAG—cycloastragenol, CREB—cAMP response element binding protein, hTERT—human telomerase reverse transcriptase, TERC—telomerase RNA component, TRAP—telomeric repeat amplification.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enukashvily, N.I., Skazina, M.A., Chubar, A.V. et al. The Effect of the Geroprotectors Astragaloside IV, Cycloastragenol, and Timovial–Epivial Peptide Complex on Telomere Length and Telomerase Activity in Human Mesenchymal Stromal Cells and Senescent Fibroblasts. Cell Tiss. Biol. 14, 83–90 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • telomeres
  • astragalus
  • cycloastragenol
  • telomerase
  • mesenchymal stromal cells
  • fibroblasts
  • geroprotectors