Skip to main content
Log in

Redistribution of Sarcomeric Myosin and α-Actinin in Cardiomyocytes in Culture upon the Rearrangement of their Contractile Apparatus

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Cardiomyocytes in culture undergo reversible rearrangement of their contractile apparatus with conversion of typical myofibrils into structures resembling stress fibers of nonmuscle cells. Such rearrangement is accompanied by the replacement of cardiac actin, the main protein of myofibrils, with its smooth muscle isoform. This study shows that along with the replacement of actin isoform the key structural sarcomeric proteins are released from actin structures and stored in cell cytoplasm as inclusions not bound with actin. The data obtained are indicative of the incompatibility of smooth muscle actin with sarcomeric isoforms of these proteins and myofibrillar organization in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Antin, P.B. and Ordahl, C.P., Isolation and characterization of an avian myogenic cell line, Dev. Biol., 1991, vol. 143, pp. 111–121.

    Article  CAS  Google Scholar 

  2. Bildjug, N.B. and Pinaev, G.P., Extracellular matrix dependence of organization of the cardiomyocyte contractile apparatus, Cell Tissue Biol., 2014, vol. 8, pp. 38–49.

    Article  Google Scholar 

  3. Bildyug, N., Bozhokina, E., and Khaitlina, S., Contribution of A–smooth muscle actin and extracellular matrix to the in vitro reorganization of cardiomyocyte contractile system, Cell Biol. Int., 2016, vol. 40, pp. 472–477.

    Article  CAS  Google Scholar 

  4. Borisov, A.B., Goncharova, E.I., Pinaev, G.P., and Rumiantsev, P.P., Changes in alpha-actinin localization and myofibrillogenesis in rat cardiomyocytes under cultivation, Tsitologiia, 1989, vol. 31, no. 6, pp. 642–646.

    CAS  PubMed  Google Scholar 

  5. Clément, S., Chaponnier, C., and Gabbiani, G., A subpopulation of cardiomyocytes expressing A-skeletal actin is identified by a specific polyclonal antibody, Circ. Res., 1999, vol. 85, pp. e51–e58.

    Article  Google Scholar 

  6. De La Cruz, E.M., Cofilin binding to muscle and non–muscle actin filaments: isoform-dependent cooperative interactions, J. Mol. Biol., 2005, vol. 346, pp. 557–564.

    Article  CAS  Google Scholar 

  7. Fyrberg, E.A., Fyrberg, C.C., Biggs, J.R., Saville, D., Beall, C.J., and Ketchum, A., Functional nonequivalence of drosophila actin isoforms, Biochem. Genet., 1998, vol. 36, pp. 271–287.

    Article  CAS  Google Scholar 

  8. Golomb, E., Ma, X., Jana, S.S., Preston, Y.A., Kawamoto, S., Shoham, N.G., Goldin, E., Conti, M.A., Sellers, J.R., and Adelstein, R.S., Identification and characterization of nonmuscle myosin II–C, a new member of the myosin II family, J. Biol. Chem., 2004, vol. 279, pp. 2800–2808.

    Article  CAS  Google Scholar 

  9. Handel, S.E., Greaser, M.L., Schultz, E., Wang, S.M., Bulinski, J.C., Lin, J.J., and Lessard, J.L., Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin, Cell Tiss. Res., 1991, vol. 263, pp. 419–30.

    Article  CAS  Google Scholar 

  10. Kaech, S., Fischer, M., Doll, T., and Matus, A., Isoform specificity in the relationship of actin to dendritic spines, J. Neurosci., 1997, vol. 17, pp. 9565–9572.

    Article  CAS  Google Scholar 

  11. Khaitlina, S.Y., Functional specificity of actin isoforms, Int. Rev. Cytol., 2001, vol. 202, pp. 35–98.

    Article  CAS  Google Scholar 

  12. Kovacs, M., Wang, F., Hu, A., Zhang, Y., and Sellers, J.R., Functional divergence of humancytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform, J. Biol. Chem., 2003, vol. 278, pp. 38132–38140.

    Article  CAS  Google Scholar 

  13. Kumar, A., Crafword, K., Close, L., Madison, M., Lorenz, J., Doetcshman, T., Pawlowski, S., Duffy, J., Neumann, J., Robbins, J., Boivin, G.P., O’Toole, B.A., and Lessard, J.L., Rescue of cardiac A-actin-deficient mice by enteric smooth muscle-actin, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 4406–4411.

    Article  CAS  Google Scholar 

  14. Martin, A.F., Phillips, R.M., Kumar, A., Crawford, K., Abbas, Z., Lessard, J.L., de Tombe, P., and Solaro, R.J., Ca(2+) activation and tension cost in myofilaments from mouse hearts ectopically expressing enteric gamma-actin, Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 283, pp. H642–H649.

    Article  CAS  Google Scholar 

  15. Mounier, N., Perriard, J.–C., Gabbiani, G., and Chaponnier, C., Transfected muscle and nonmuscle actins are differentially sorted by cultured smooth muscle and nonmuscle cells, J. Cell Sci., 1997, vol. 110, pp. 839–846.

    CAS  PubMed  Google Scholar 

  16. Nag, A.C. and Cheng, M., Adult mammalian cardiac muscle cells in culture, Tissue Cell, 1981, vol. 13, pp. 515–523.

    Article  CAS  Google Scholar 

  17. Otey, C.A. and Carpen, O., Alpha-actinin Revised: a fresh look at an old player, Cell Motil. Cytoskeleton, 2004, vol. 58, pp. 104–111.

    Article  CAS  Google Scholar 

  18. Perrin, B.J. and Ervasti, J.M., The actin gene family: function follows isoform, Cytoskeleton Hoboken, 2010, vol. 67, pp. 630–634.

    Article  CAS  Google Scholar 

  19. Ruzicka, D.L. and Schwartz, R.J., Sequential activation of alpha–actin genes during avian cardiogenesis: vascular smooth muscle alpha–actin gene transcripts mark the onset of cardiomyocyte differentiation, J. Cell Biol., 1988, vol. 107, pp. 2575–2586.

    Article  CAS  Google Scholar 

  20. Schaub, M.C., Hefti, M.A., Harder, B.A., and Eppenberger, H.M., Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes, J. Mol. Med., 1997, vol. 75, pp. 901–920.

    Article  CAS  Google Scholar 

  21. Van Bilsen, M. and Chien, K.R., Growth and hypertrophy of the heart: toward an understanding of cardiac specific and inducible gene expression, Cardiovasc. Res., 1993, vol. 27, pp. 1140–1149.

    Article  CAS  Google Scholar 

  22. Vandekerckhove, J., Bugaisky, G., and Buckingham, M., Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells, J. Biol. Chem., 1986, vol. 261, pp. 1838–1843.

    CAS  PubMed  Google Scholar 

  23. Von Arx, P., Bantle, S., Soldati, T., and Perriard, J.C., Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocytes cytoarchitecture and function, J. Cell Biol., 1995, vol. 131, pp. 1759–1773.

    Article  CAS  Google Scholar 

  24. Wang, F., Kovacs, M., Hu, A., Limouze, J., Harvey, E.V., and Sellers, J.R., Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance, J. Biol. Chem., 2003, vol. 278, pp. 27439–27448.

    Article  CAS  Google Scholar 

  25. Winegrad, S., Wisnewsky, C., and Schwartz, K., Effect of thyroid hormone on the accumulation of mRNA for skeletal and cardiac alpha-actin in hearts from normal and hypophysectomized rats, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, pp. 2456–2460.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 18-74-00129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Bildyug.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. We declare that all experiments with animals were carried out in compliance with generally accepted international ethical standards concerning animal welfare guaranteed by the certificate of the Institute of Cytology, Russian Academy of Sciences, identification number F18-00380 (Animal Welfare Assurance).

Additional information

Translated by I. Fridlyanskaya

Abbreviations: CM—cardiomyocyte, PBS—phosphate buffered saline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildyug, N.B., Khaitlina, S.Y. Redistribution of Sarcomeric Myosin and α-Actinin in Cardiomyocytes in Culture upon the Rearrangement of their Contractile Apparatus. Cell Tiss. Biol. 13, 360–365 (2019). https://doi.org/10.1134/S1990519X1905002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1905002X

Keywords:

Navigation