Skip to main content
Log in

Characteristics of Tumors That Develop in Athymic Mice after Transplantation of Human Malignant CD4+ T-lymphocytes Transformed ex vivo

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Normal human CD4+ T-lymphocytes can undergo malignant transformation during prolong cultivation in conditions of high endonuclease G (EndoG) expression or after DNA damage. The aim of this work was to study biochemical and cytogenetic features of transformed ex vivo human malignant CD4+ T- lymphocytes, as well as biochemical and morphological characteristics of tumors that develop in athymic mice after transplantation of these cells. The telomerase activity was higher and telomere length was shorter in tumor cells than in control cells. Transformed malignant cells exhibited a high level of chromosomal aberrations. Expression of genes regulating the cell cycle changed in transformed malignant CD4+ T-lymphocytes and tumor cells. The tumors that developed were classified as multicomponent Т-cell lymphomas and panniculitis-like T-cell lymphomas. Thus, transformed CD4+ T-lymphocytes can generate malignant tumors of various histogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Balmus, G., Lim, P.X., Oswald, A., Hume, K.R., Cassano, A., Pierre, J., Hill, A., Huang, W., August, A., Stokol, T., Southard, T., and Weiss, R.S., HUS1 regulates in vivo responses to genotoxic chemotherapies, Oncogene, 2016, vol. 35, pp. 662–669.

    Article  CAS  PubMed  Google Scholar 

  2. Blackburn, E.H., Telomeres and telomerase: their mechanisms of action and the effects of altering their functions, FEBS Lett., 2005, vol. 579, pp. 859–862.

    Article  CAS  PubMed  Google Scholar 

  3. Campisi, J., Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors, Cell, 2005, vol. 120, pp. 513–522.

    Article  CAS  PubMed  Google Scholar 

  4. Campisi, J., Aging, cellular senescence, and cancer, Annu. Rev. Physiol., 2013, vol. 75, pp. 685–705.

    Article  CAS  PubMed  Google Scholar 

  5. Cawthon, R.M., Telomere measurement by quantitative PCR, Nucleic Acids Res, 2002, vol. 30. e47.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, J.-H., Hales, C.N., and Ozanne, S.E., DNA damage, cellular senescence and organismal ageing: causal or correlative?, Nucleic Acids Res., 2007, vol. 35, pp. 7417–7428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. d’Adda di Fagagna, F., Living on a break: cellular senescence as a DNA-damage response, Nat. Rev. Cancer, 2008, vol. 8, pp. 512–522.

    Article  CAS  PubMed  Google Scholar 

  8. DeVore, G.R., The genetic sonogram: its use in the detection of chromosomal abnormalities in fetuses of women of advanced maternal age, Prenat. Diagn., 2001, vol. 21, pp. 40–55.

    Article  CAS  PubMed  Google Scholar 

  9. Dimri, G.P., What has senescence got to do with cancer?, Cancer Cell, 2005, vol. 7, pp. 505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanahan, D. and Weinberg, R.A., The hallmarks of cancer, Cell, 2000, vol. 100, pp. 57–70.

    Article  CAS  PubMed  Google Scholar 

  11. Hiyama, E. and Hiyama, K., Telomerase detection in the diagnosis and prognosis of cancer, Cytotechnology, 2004, vol. 45, pp. 61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. ISCN, International Standing Committee on Human Cytogenetic Nomenclature, Shaffer, L.G., McGowan-Jordan, J., and Schmid, M., Eds., Karger, 2013.

  13. Jiang, Q., Xu, Y., Li, X., Peng, Q., Cai, H., and Wang, J., Progressive and painful wound as a feature of subcutaneous panniculitis-like T-cell lymphoma (SPTCL): report of a case and review of literature, Int. J. Clin. Exp. Pathol., 2015, vol. 8, pp. 735–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W., Specific association of human telomerase activity with immortal cells and cancer, Science, 1994, vol. 266, pp. 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  15. Kryston, T.B., Georgiev, A.B., Pissis, P., and Georgakilas, A.G., Role of Oxidative Stress and DNA Damage in Human Carcinogenesis, Mutat. Res. Mol. Mech. Mutagen., 2011, vol. 711, pp. 193–201.

    Article  CAS  Google Scholar 

  16. Metsalu, T., and Vilo, J., ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap, Nucleic Acids Res., 2015, vol. 43, pp. W566–W570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meyerson, M., Counter, C.M., Eaton, E, .N., Ellisen, L.W., Steiner, P., Caddle, S.D., Ziaugra, L., Beijersbergen, R.L., Davidoff, M.J., Liu, Q., Bacchetti, S., Haber, D.A., and Weinberg, R.A., HEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization, Cell, 1997, vol. 90, pp. 785–795.

    Article  CAS  PubMed  Google Scholar 

  18. Mikhailov, V.M., Kaminskaya, E.V., Popov, B.V., Kuzovatov, S.N., Skripkina, N.S., Kosyakova, G.P., Zaichik, A.M., Grinchuk, T.M., and Nikolsky, N.N., Characteristics of tumors developed in mdx mice after transplantation of GFP-positive mesenchymal stem cells isolated from bone marrow of transgenic C57BL/6 mice, Cell Tissue Biol., 2010, vol. 4, pp. 419–423.

    Article  Google Scholar 

  19. Miura, M., Miura, Y., Padilla-Nash, H.M., Molinolo, A.A., Fu, B., Patel, V., Seo, B.-M., Sonoyama, W., Zheng, J.J., Baker, C, C., Chen, W., Ried, T., and Shi, S., Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation, Stem Cells, 2006, vol. 24, pp. 1095–1103.

    Article  PubMed  Google Scholar 

  20. Moskaleva, E.Y., Zhorova, E.S., Semochkina, Yu.P., Rodina, A.V., Vysotskaya, O.V., Glukhov, A.I., Chukalova, A.A., Posypanova, G.A., and Saprykin, V.P., Characteristics of tumors that have developed in mice injected with syngenic irradiated mesenchymal stem cells of bone marrow, Cell Tissue Biol., 2017, vol. 11, pp. 381–388.

    Article  Google Scholar 

  21. Pelegrini, A.L., Moura, D.J., Brenner, B.L., Ledur, P.F., Maques, G.P., Henriques, J.A.P., Saffi, J., and Lenz, G., Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest, Mutagenesis, 2010, vol. 25, pp. 447–454.

    Article  CAS  PubMed  Google Scholar 

  22. Popov, B.V., Petrov, N.S., Mikhailov, V.M., Tomilin, A.N., Alekseenko, L.L., Grinchuk, T.M., and Zaichik, A.M., Spontaneous transformation and immortalization of mesenchymal stem cells in vitro, Cell Tissue Biol., 2009, vol. 3, pp. 110–120.

    Article  Google Scholar 

  23. Reissig, K., Silver, A., Hartig, R., Schinlauer, A., Walluscheck, D., Guenther, T., Siedentopf, S., Ross, J., Vo, D.-K., Roessner, A., and Poehlmann-Nitsche, A., Chk1 promotes DNA damage response bypass following oxidative stress in a model of hydrogen peroxide-associated ulcerative colitis through JNK inactivation and chromatin binding, Oxid. Med. Cell. Longev., 2017, pp. 1–20. https://doi.org/10.1155/2017/9303158

  24. Rodriguez, R., Rubio, R., and Menendez, P., Modeling sarcomagenesis using multipotent mesenchymal stem cells, Cell Res., 2012, vol. 22, pp. 62–77. https://doi.org/10.1038/cr.2011.157

    Article  CAS  PubMed  Google Scholar 

  25. Saebøe-Larssen, S., Fossberg, E., and Gaudernack, G., Characterization of novel alternative splicing sites in human telomerase reverse transcriptase (hTERT): analysis of expression and mutual correlation in mRNA isoforms from normal and tumour tissues, BMC Mol. Biol., 2006, vol. 7, p. 26. https://doi.org/10.1186/1471-2199-7-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satyanarayana, A. and Kaldis, P., Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms, Oncogene, 2009, vol. 28, pp. 2925–2939.

    Article  CAS  PubMed  Google Scholar 

  27. Solomon, E., Borrow, J., and Goddard, A.D., Chromosome aberrations and cancer, Science, 1991, vol. 254, pp. 1153–1160.

    Article  CAS  PubMed  Google Scholar 

  28. Sugeeth, M.T., Narayanan, G., Jayasudha, A.V., and Nair, R.A., Subcutaneous panniculitis-like T-cell lymphoma, Proc. (Bayl. Univ. Med. Cent.), 2017, vol. 30, pp. 76–77.

    Article  Google Scholar 

  29. Sun, X., and Kaufman, P.D., Ki-67: more than a proliferation marker, Chromosoma, 2018, vol. 127, pp. 175–186. https://doi.org/10.1007/s00412-018-0659-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Todd, D.E., Densham, R.M., Molton, S.A., Balmanno, K., Newson, C., Weston, C.R., Garner, A.P., Scott, L., and Cook, S.J., ERK1/2 and p38 cooperate to induce a P21CIP1-dependent G1 cell cycle arrest, Oncogene, 2004, vol. 23, pp. 3284–3295.

    Article  CAS  PubMed  Google Scholar 

  31. Ulaner, G.A., Hu, J.F., Vu, T.H., Giudice, L.C., and Hoffman, A.R., Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts, Cancer Res., 1998, vol. 58, pp. 4168–4172.

    CAS  PubMed  Google Scholar 

  32. Vasina, D.A., Zhdanov, D.D., Orlova, E.V., Orlova, V.S., Pokrovskaya, M.V., Aleksandrova, S.S., and Sokolov, N.N., Apoptotic endonuclease EndoG inhibits telomerase activity and induces malignant transformation of human CD4+ T cells, Biochemistry (Moscow), 2017, vol. 82, pp. 24–37.

    CAS  PubMed  Google Scholar 

  33. Vineis, P., Schatzkin, A., and Potter, J.D., Models of carcinogenesis: an overview, Carcinogenesis, 2010, vol. 31, pp. 1703–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vorsanova, S.G., Iourov, I.Y., Kolotii, A.D., Beresheva, A.K., Demidova, I.A., Kurinnaya, O.S., Kravets, V.S., Monakhov, V.V., Soloviev, I.V., and Yurov, Y.B., Chromosomal mosaicism in spontaneous abortions: analysis of 650 cases, Russ. J. Genet., 2010, vol. 46, pp. 1197–1200.

    Article  CAS  Google Scholar 

  35. Ye, J., Huang, X., Hsueh, E.C., Zhang, Q., Ma, C., Zhang, Y., Varvares, M.A., Hoft, D.F., and Peng, G., Human regulatory T cells induce T-lymphocyte senescence, Blood, 2012, vol. 120, pp. 2021–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhdanov, D.D., Pokrovsky, V.S., Pokrovskaya, M.V., Alexandrova, S.S., Eldarov, M.A., Grishin, D.V., Basharov, M.M., Gladilina, Y.A., Podobed, O.V., and Sokolov, N.N., Rhodospirillum rubrum L-asparaginase targets tumor growth by a dual mechanism involving telomerase inhibition, Biochem. Biophys. Res. Commun., 2017a, vol. 492, pp. 282–288. https://doi.org/10.1016/j.bbrc.2017.08.078

    Article  CAS  PubMed  Google Scholar 

  37. Zhdanov, D.D., Vasina, D.A., Grachev, V.A., Orlova, E.V., Orlova, V.S., Pokrovskaya, M.V., Alexandrova, S.S., and Sokolov, N.N., Alternative splicing of telomerase catalytic subunit hTERT generated by apoptotic endonuclease EndoG induces human CD4+ T cell death, Eur. J. Cell Biol., 2017b, vol. 96, pp. 653–664.

    Article  CAS  PubMed  Google Scholar 

  38. Zhdanov, D.D., Vasina, D.A., Orlova, E.V., Orlova, V.S., Pokrovskaya, M.V., Aleksandrova, S.S., and Sokolov, N.N., Apoptotic endonuclease EndoG regulates alternative splicing of human telomerase catalytic subunit hTERT, Biochemistry (Moscow), Suppl. Ser. B Biomed. Chem., 2017c, vol. 11, pp. 154–165.

    Google Scholar 

  39. Zhdanov, D.D., Vasina, D.A., Orlova, E.V., Orlova, V.S., Pokrovsky, V.S., Pokrovskaya, M.V., Aleksandrova, S.S., and Sokolov, N.N., Cisplatin-induced apoptotic endonuclease EndoG inhibits telomerase activity and causes malignant transformation of human CD4+ T lymphocytes, Biochemistry (Moscow). Suppl. Ser. B. Biomed. Chem., 2017d, vol. 11, pp. 251–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Zhdanov.

Additional information

Translated by I. Fridlyanskaya

  Abbreviations: AS—alternative splicing, hTERT—human telomerase reverse transcriptase, TRAP—telomeric repeat amplification protocol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, D.D., Gabasvili, A.N., Gladilina, Y.A. et al. Characteristics of Tumors That Develop in Athymic Mice after Transplantation of Human Malignant CD4+ T-lymphocytes Transformed ex vivo. Cell Tiss. Biol. 13, 176–187 (2019). https://doi.org/10.1134/S1990519X19030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19030118

Keywords:

Navigation