Skip to main content

Regulation of the Pore-Forming Activity of Cecropin A by Local Anesthetics

Abstract

The influence of local anesthetics on the regulation of the channel-forming activity of the antimicrobial peptide cecropin A has been investigated. The mean current flowing through the single cecropin channels isc was determined, and steady-state transmembrane current induced by cecropin AI was measured. It has been shown that the introduction of 1 mM of bupivacaine, benzocaine or 0.3 mM of tetracaine into the membrane bathing solution results in a decrease in isc and I. At the same time, the addition of 1 mM lidocaine or procaine to the membrane-bathing solutions does not lead to a significant change in isc and I. Comparison of the absolute values and the sign of the change in the boundary potential of negatively charged membranes and relative changes of isc and I after addition of local anesthetics shows that neither parameter correlates with the membrane boundary potential. The results of studying the effect of tested local anesthetics on the phase transition of membrane lipids allow us to conclude that the observed changes of isc and I are due to modulation of the elastic properties of the membrane.

This is a preview of subscription content, access via your institution.

Abbreviations

DOPS:

1,2-dioleyl-sn-glycero-3-phosphoserine

DOPE:

1,2-dioleyl-sn-glycero-3-phosphoethanolamine

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

i sc :

mean current flowing through single cecropin channels

I :

steady-state transmembrane current induced by cecropin A

References

  1. Andersen, O.S., Finkelstein, A., Katz, I., and Cass, A., Effect of phloretin on the permeability of thin lipid membranes, J. Gen. Physiol., 1976, vol. 67, pp. 749–771.

    Article  PubMed  CAS  Google Scholar 

  2. Apetrei, A., Mereuta, L., and Luchian, T., The RH421 styryl dye induced, pore model-dependent modulation of antimicrobial peptides activity in reconstituted planar membranes, Biochim. Biophys. Acta, 2009, vol. 1790, pp. 809–816.

    Article  PubMed  CAS  Google Scholar 

  3. Bezrukov, S.M., Rand, R.P., Vodyanoy, I., and Parsegian, V.A., Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge, Faraday Discuss., 1998, vol. 111, pp. 146–173.

    Google Scholar 

  4. Cantor, R.S., The lateral pressure profile in membranes: a physical mechanism of general anesthesia, Toxicol. Lett., 1998, vol. 100–101, pp. 451–458.

    Article  PubMed  Google Scholar 

  5. Cerón, J.M., Contreras-Moreno, J., Puertollano, E., de Cienfuegos, G.Á., Puertollano, M.A., and de Pablo, M.A., The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells, Peptides, 2010, vol. 31, pp. 1494–1503.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, H.M., Wang, W., Smith, D., and Chan, S.C., Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells, Biochim. Biophys. Acta, 1997, vol. 1336, pp. 171–179.

    Article  PubMed  CAS  Google Scholar 

  7. Efimova, S.S., Schagina, L.V., and Ostroumova, O.S., Channel forming activity of cecropins in lipid bilayers. Effect of agents modifying the membrane dipole potential, Langmuir, 2014, vol. 30, pp. 7884–7892.

    Article  PubMed  CAS  Google Scholar 

  8. Efimova, S.S., Zakharova, A.A., Schagina, L.V., and Ostroumova, O.S., Local anesthetics affect gramicidin A channels via membrane electrostatic potentials, J. Membr. Biol., 2016, vol. 249, no. 6, pp. 781–787.

    Article  PubMed  CAS  Google Scholar 

  9. Fink, J., Boman, A., Boman, H.G., and Merrifield, R.B., Design, synthesis and antibacterial activity of cecropin-like model peptides, Int. J. Pept. Protein Res., 1989a, vol. 33, pp. 412–421.

    Article  PubMed  CAS  Google Scholar 

  10. Fink, J., Merrifield, R.B., Boman, A., and Boman, H.G., The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity, J. Biol. Chem., 1989b, vol. 264, pp. 6260–6267.

    PubMed  CAS  Google Scholar 

  11. Fozzard, H.A., Lee, P.J., and Lipkind, G.M., Mechanism of local anesthetic drug action on voltage-gated sodium channels, Curr. Pharm. Des., 2005, vol. 11, pp. 2671–2686.

    Article  PubMed  CAS  Google Scholar 

  12. Hoskin, D.W. and Ramamoorthy, A., Studies on anticancer activities of antimicrobial peptides, Biochim. Biophys. Acta, 2008, vol. 1778, pp. 357–375.

    Article  PubMed  CAS  Google Scholar 

  13. Hultmark, D., Steiner, H., Rasmuson, T., and Boman, H.G., Insect immunity, purification and properties of three inducible bactericidal protein from hemolymph of immunized pupae of Hyalophora cecropia, Eur. J. Biochem., 1980, vol. 106, pp. 7–16.

    Article  PubMed  CAS  Google Scholar 

  14. Hultmark, D., Engström, A., Bennich, H., Kapur, R., and Boman, H.G., Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae, Eur. J. Biochem., 1982, vol. 127, pp. 207–217.

    Article  PubMed  CAS  Google Scholar 

  15. Koynova R., and Caffrey, M., Phases and phase transitions of the phosphatidylcholines, Biochim. Biophys. Acta, 1998, vol. 1376, pp. 91–145.

    Article  PubMed  CAS  Google Scholar 

  16. Mereuta, L., Luchian, T., Park, Y., and Hahm, K.S., The role played by lipids unsaturation upon the membrane interaction of the Helicobacter pylori HP(2-20) antimicrobial peptide analogue HPA3, J. Bioenerg. Biomembr., 2009, vol. 41, pp. 79–84.

    Article  PubMed  CAS  Google Scholar 

  17. Montal, M. and Muller, P., Formation of bimolecular membranes from lipid monolayers and study of their electrical properties, Proc. Natl. Acad. Sci. U. S. A., 1972, vol. 65, pp. 3561–3566.

    Article  Google Scholar 

  18. Moore, A.J., Beazley, W.D., Bibby, M.C., and Devine, D.A., Antimicrobial activity of cecropins, J. Antimicrob. Chemother., 1996, vol. 37, pp. 1077–1089.

    Article  PubMed  CAS  Google Scholar 

  19. Ohki, S., Adsorption of local anesthetics on phospholipid membranes, Biochim. Biophys. Acta, 1984, vol. 777, pp. 56–66.

    Article  PubMed  CAS  Google Scholar 

  20. Ohki, S. and Ohshima, H., Distribution of local anesthetics in lipid membranes, Colloids Surf. B, 1996, vol. 5, pp. 291–305.

    Article  CAS  Google Scholar 

  21. Qu, X.M., Steiner, H., Engstrom, A., Bennich, H., and Boman, H.G., Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi, Eur. J. Biochem., 1982, vol. 127, pp. 219–224.

    Article  PubMed  CAS  Google Scholar 

  22. Sato, H. and Feix, J.B., Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides, Biochim. Biophys. Acta, 2006, vol. 1758, pp. 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  23. Schlamadinger, D.E., Wang, Y., McCammon, J.A., and Kim, J.E., Spectroscopic and computational study of melittin, cecropin A, and the hybrid peptide CM15, J. Phys. Chem. B, 2012, vol. 116, pp. 10600–10608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shai, Y., Mode of action of membrane active antimicrobial peptides, Biopolymers, 2002, vol. 66, pp. 236–248.

    Article  PubMed  CAS  Google Scholar 

  25. Shin, S.Y., Kang, J.H., and Hahm, K.S., Structure–antibacterial, antitumor and hemolytic activity relationships of cecropin A–magainin 2 and cecropin A–melittin hybrid peptides, J. Pept. Res., 1999, vol. 53, pp. 82–90.

    Article  PubMed  CAS  Google Scholar 

  26. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., and Boman, H.G., Sequence and specificity of two antibacterial proteins involved in insect immunity, Nature, 1981, vol. 292, pp. 246–248.

    Article  PubMed  CAS  Google Scholar 

  27. Strichartz, G.R., Sanchez, V., Arthur, G.R., Chafetz, R., and Martin, D., Fundamental properties of local anesthetics, II. Measured octanol: buffer partition coefficients and pKa values of clinically used drugs, Anesthesia Analgesia, 1990, vol. 71, pp. 158–170.

    Article  PubMed  CAS  Google Scholar 

  28. Suttmann, H., Retz, M., Paulsen, F., Harder, J., Zwergel, U., Kamradt, J., Wullich, B., Unteregger, G., Stöckle, M., and Lehmann, J., Antimicrobial peptides of the cecropin-family show potent antitumor activity against bladder cancer cells, BMC Urol., 2008, vol. 8, p. 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Takeda, K., Okuno, H., Hata, T., Nishimoto, M., Matsuki, H., and Kaneshina, S., Interdigitation and vesicle- to-micelle transformation induced by a local anesthetic tetracaine in phospholipids bilayers, Colloids Surf. B, 2009, vol. 72, pp. 135–140.

    Article  CAS  Google Scholar 

  30. Teshima, T., Ueki, Y., Nakai, T., and Shiba, T., Structure determination of lepidopteran, self-defense substance produced by silkworm, Tetrahedron, 1986, vol. 42, pp. 829–834.

    Article  CAS  Google Scholar 

  31. Wade, D., Andreu, D., Mitchell, S.A., Silveira, A.M., Boman, A., Boman, H.G., and Merrifield, R.B., Antibacterial peptides designed as analogs or hybrids of cecropins and melittin, Int. J. Pept. Protein Res., 1992, vol. 40, pp. 429–436.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. S. Efimova.

Additional information

Original Russian Text © S.S. Efimova, R.Ya. Medvedev, E.G. Chulkov, L.V. Schagina, O.S. Ostroumova, 2018, published in Tsitologiya, 2018, Vol. 60, No. 3, pp. 219–227.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efimova, S.S., Medvedev, R.Y., Chulkov, E.G. et al. Regulation of the Pore-Forming Activity of Cecropin A by Local Anesthetics. Cell Tiss. Biol. 12, 331–341 (2018). https://doi.org/10.1134/S1990519X18040028

Download citation

Keywords

  • lipid membranes
  • ion channels
  • cecropin A
  • local anesthetics