Bioresorption of Porous 3D Matrices Based on Collagen in Liver and Muscular Tissue

Abstract

Highly porous cylinder-shaped 3D matrices with diameters of 1.3 and 3 mm were obtained by lyophilization of collagen solution. A study in vivo of the mechanism and rate of resorption of the resulting material showed that complete resorption of the matrix occurred 6 weeks after their implantation into liver tissue and 3 weeks after implantation into muscle tissue of animals. Surrounding tissues were not altered or damaged. Histological analysis revealed that, simultaneously with the resorption of matrix collagen, connective tissue and blood vessels were formed. This allows us to recommend the developed porous material based on collagen for use as matrices for tissue engineering and cellular transplantation.

This is a preview of subscription content, log in to check access.

Abbreviations

PCM:

porous collagen matrix

References

  1. Armentano, I., Dottori, M., Fortunati, E., and Kenny, J.M., Biodegradable polymer matrix nanocomposites for tissue engineering: a review, Polym. Degrad. Stab., 2010, vol. 95, no. 11, pp. 2126–2146.

    Article  CAS  Google Scholar 

  2. Berisio, R., Vitagliano, L., Mazzarella, L., and Zagari, A., Crystal structure of the collagen triple helix model [(Pro–Pro–Gly)10]3, Protein Sci, 2002, vol. 11, no. 2, pp. 262–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bing, Y., Xing, Y.L., Shuai, S., Xiang, Y.K., Gang, G., Mei, J.H., Feng, L., Yu, Q.W., Xia, Z., and Zhi, Y.Q., Preparation and characterization of a novel chitosan scaffold, Carbohydr. Polym., 2010, vol. 80, pp. 860–865.

    Article  CAS  Google Scholar 

  4. Causa, F., Netti, P.A., and Ambrosio, L., A Multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue, Biomaterials, 2007, vol. 28, no. 34, pp. 5093–5099.

    Article  CAS  PubMed  Google Scholar 

  5. Chattopadhyay, S. and Raines, R.T., Collagen-based biomaterials for wound healing, Biopolymers, 2014, vol. 101, no. 8, pp. 821–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheung, H., Lau, K., Lu, T., and Hui, D., A critical review on polymer-based bio-engineered materials for scaffold development, Composites, Part B: Engineering, 2007, vol. 38, no. 3, pp. 291–300.

    Article  CAS  Google Scholar 

  7. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., and Kumar, D.S., Polymeric scaffolds in tissue engineering application: a review, Int. J. Polymer Sci. 2011, Article ID 290602.

    Google Scholar 

  8. Dobrovol’skaya, I.P., Popryadukhin, P.V., Yudin, V.E., Ivan’kova, E.M., Yukina, G.Yu., Yudenko, A.N., and Smirnova, N.V., Biological resorption of fibers from chitosan in endomysium and perimysium of muscular tissue, Cell Tissue Biol., 2016, vol. 10, no. 5, pp. 395–401.

    Article  Google Scholar 

  9. Dobrovolskaya, I.P., Popryadukhin, P.V., Yudin, V.E., Ivan’kova, E.M., Elokhovskiy, V.Yu., Weishauptova, Z., and Balik, K., Structure and properties of porous films based on aliphatic copolyamide developed for cellular technologies, J. Mater. Sci. Mater. Med., 2015, vol. 26, no. 1, pp. 5381–5391.

    Article  CAS  PubMed  Google Scholar 

  10. Dornish, M., Kaplan, D., and Skaugrud, O., Standards and guidelines for biopolymers in tissue-engineered medical products, Ann. NY Acad. Sci., 2001, vol. 944, pp. 388–397.

    Article  CAS  PubMed  Google Scholar 

  11. Gleadall, A., Pan, J., Kruft, M.-A., and Kellomäki, M., Degradation mechanisms of bioresorbable polyesters, part 2. Effects of initial molecular weight and residual monomer, Acta Biomat., 2014, vol. 10, pp. 2233–2240.

    Article  CAS  Google Scholar 

  12. Gunatillake, P.A. and Adhikari, R., Biodegradable synthetic polymers for tissue engineering, Eur. Cell. Mater., 2003, vol. 20, pp. 1–16.

    Google Scholar 

  13. Ivan’kova, E.M., Dobrovolskaya, I.P., Popryadukhin, P.V., Kryukov, A., Yudin, V.E., and Morganti, P., In-situ cryo-SEM investigation of porous structure formation of chitosan sponges, Polym. Test., 2016, vol. 52, pp. 41–45.

    Article  CAS  Google Scholar 

  14. Khan, F., Tanaka, M., and Ahmad, S.R., Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices, J. Mater. Chem. B, 2015, vol. 3, pp. 8224–8249.

    Article  CAS  Google Scholar 

  15. Kohane, D.S. and Langer, R., Polymeric biomaterials in tissue engineering, Pediatr. Res., 2008, vol. 63, no. 5, pp. 487–491.

    Article  CAS  PubMed  Google Scholar 

  16. Ma, Z., Kotaki, M., Inai, R., and Ramakrishna, S., Potential of nanofiber matrix as tissue-engineering scaffolds, Tissue Eng., 2005, vol. 11, no. 1–2, pp. 101–109.

    Article  PubMed  Google Scholar 

  17. Martinoa Di, A., Sittinger, M., and Risbud, M.V., Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, 2005, vol. 26, pp. 5983–5990.

    Article  CAS  Google Scholar 

  18. Parenteau-Bareil, R., Gauvin, R., and Berthod, F., Collagen-based biomaterials for tissue engineering applications, Materials, 2010, vol. 3, pp. 1863–1887.

    Article  CAS  Google Scholar 

  19. Popryaduhin, P.V., Yukina, G.Yu., Suslov, D.N., Dobrovolskaya, I.P., Ivankova, E.M., and Yudin, V.E., Bioresorption of porous 3D-materials based on chitosan, Tsitologiia, 2016, vol. 58, no. 10, pp. 771–777.

    CAS  PubMed  Google Scholar 

  20. Sachlos, E. and Czernuszka, J.T., Making tissue engineering scaffolds work. Review on the application of solidfreeform fabrication technology to the production of tissue engineering scaffolds. Making tissue engineering, Eur. Cell. Mater., 2003, vol. 5, pp. 29–40.

    Article  CAS  PubMed  Google Scholar 

  21. Salgado, A.J., Coutinho, O.P., and Reis, R.L., Bone tissue engineering: state of the art and future trends, Macromol. Biosci., 2004, vol. 4, pp. 743–765.

    Article  CAS  Google Scholar 

  22. Shoulders, M.D. and Raines, R.T., Collagen structure and stability, Annu. Rev. Biochem., 2009, vol. 78, pp. 929–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Solov’eva, N.I., Matrix metalloproteinases and their biological functions, Bioorg. Khim., 1998, vol. 24, no. 4, pp. 245–255.

    PubMed  Google Scholar 

  24. Whu, S.W., Hung, K., Hsieh, K., Chen, C., Tsai, C., and Hsu, S., In vitro and in vivo evaluation of chitosan–gelatin scaffolds for cartilage tissue engineering, Mat. Sci. Eng., 2013, vol. 33, pp. 2855–2863.

    Article  CAS  Google Scholar 

  25. Yamamoto, M., Sawaya, R., Mohanam, S., Loskutoff, D.J., Bruner, J.M., Rao, V.H., Oka, K., Tomonaga, M., Nicolson, G.L., and Rao, J.S., Expression and localization of urokinase-type plasminogen activator receptor in human gliomas, Cancer Res., 1994, vol. 54, pp. 3329–3332.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. V. Popryadukhin.

Additional information

Original Russian Text © P.V. Popryadukhin, G.Y. Yukina, I.P. Dobrovolskaya, E.M. Ivankova, V.E. Yudin, 2017, published in Tsitologiya, 2017, Vol. 59, No. 9, pp. 609–616.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popryadukhin, P.V., Yukina, G.Y., Dobrovolskaya, I.P. et al. Bioresorption of Porous 3D Matrices Based on Collagen in Liver and Muscular Tissue. Cell Tiss. Biol. 12, 247–255 (2018). https://doi.org/10.1134/S1990519X18030094

Download citation

Keywords

  • 3D porous material
  • collagen
  • resorption
  • tissue engineering
  • cellular transplantation
  • liver
  • muscle tissue
  • histological analysis