Skip to main content
Log in

Nucleolin and Nucleoli in Ependymocytes and Tanycytes of the Third Ventricle of the Rat Brain

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The aim of the present study was to compare structure of the nucleoli of ependymocytes, tanycytes, and secretory cells of the subcommissural organ using immunohistochemical staining for nucleolin and confocal laser microscopy. The study was performed in samples from the diencephalon of adult male Wistar rats (n = 6). The samples were fixed in zinc–ethanol–formaldehyde, a fixative providing a high level of preservation of antigen determinants. In the present study, we estimated diameters of nucleoli and their number in various types of cells lining the third ventricle. We compared for the first time the nucleoli of different subpopulations of tanycytes and report data on the distribution of nucleolin protein in the cells lining the ventricles. The content and location of nucleolin reflect the functional state of the cell. Our data will promote understanding of the interrelationships between the indices of the nucleolar apparatus and the functional state of the cell under various conditions, including stress, neoplastic transformation, and other pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SCO:

subcommissural organ

CSF:

cerebrospinal fluid

CVO:

circumventricular organs

References

  • Chen, Z. and Xu, X., Roles of nucleolin, focus on cancer and anti-cancer therapy, Saudi Med., 2016, vol. J 37, pp. 1312–1318.

    Article  Google Scholar 

  • Del Bigio, M.R., Ependymal cells: biology and pathology, Acta Neuropathol., 2010, vol. 119, pp. 55–73.

    Article  PubMed  Google Scholar 

  • Derenzini M., Brighenti, E., Donati, G., Vici, M., Ceccarelli, C., Santini, D., Taffurelli, M., Montanaro, L., and Treré, D., The P53-mediated sensitivity of cancer cells to chemotherapeutic agents is conditioned by the status of the retinoblastoma protein, J. Pathol., 2009, vol. 219, pp. 373–382.

    Article  CAS  PubMed  Google Scholar 

  • Farley, K.I., Surovtseva, Y., Merkel, J., and Baserga, S.J., Determinants of mammalian nucleolar architecture, Chromosoma, 2015, vol. 124, pp. 323–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman, T. and Hajihosseini, M.K., Hypothalamic tanycytes— masters and servants of metabolic, neuroendocrine, and neurogenic functions, Front. Neurosci., 2015, vol. 9, pp. 2–9.

    Article  Google Scholar 

  • Grondona, J.M., Hoyo-Becerra, C., Visser, R., Fernández-Llebrez, P., and López-Ávalos, M.D., The subcommissural organ and the development of the posterior commissure, Int. Rev. Cell Mol. Biol., 2012, vol. 296, pp. 63–137.

    Article  CAS  PubMed  Google Scholar 

  • Guerra, M.M., González, C., Caprile, T., Jara, M., Vío, K, Muñoz, R.I., Rodríguez, S., and Rodríguez, E.M., Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis, Front. Cell. Neurosci., 2015, vol. 9, pp. 1–17.

    Article  Google Scholar 

  • Hetman, M. and Pietrzak, M., Emerging roles of the neuronal nucleolus, Trends Neurosci., 2012, vol. 35, pp. 305–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg Olausson, K., Elsir, T., Moazemi Goudarzi, K., Nistér, M., and Lindström, M.S., NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape, Sci. Rep., 2015, vol. 5, pp. 1–15.

    Article  Google Scholar 

  • Joly, J.S., Osório, J., Alunni, A., Auger, H., Kano, S., and Rétaux, S., Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs, Semin. Cell Dev. Biol., 2007, vol. 18, pp. 512–524.

    Article  PubMed  Google Scholar 

  • Kaur, C. and Ling, E.A., The circumventricular organs, Histol. Histopathol., 2017, vol. 32, pp. 879–892.

    PubMed  Google Scholar 

  • Kirik, O.V. and Korzhevskii, D.E., Vimentin in ependymal cells and subventricular proliferative zone cells of rat telencephalon, Bull. Exp. Biol. Med., 2013, vol. 154, pp. 553–557.

    Article  CAS  PubMed  Google Scholar 

  • Korzhevskii, D.E., Choroid plexus and structural organization of blood-CSF barrier in human, Reg. Krovoobr. Mikrotsirk., 2003, vol. 2, no. 1, pp. 5–14.

    Google Scholar 

  • Lafarga, M., Berciano, M.T., Saurez, I., Andres, M.A., and Berciano, J., Reactive astroglia–neuron relationships in the human cerebellar cortex: a quantitative, morphological and immunocytochemical study in Creutzfeldt–Jakob disease, Int. J. Dev. Neurosci., 1993, vol. 11, pp. 199–213.

    Article  CAS  PubMed  Google Scholar 

  • Langlet, F., Mullier, A., Bouret, S.G., Prevot, V., and Dehouck, B., Tanycyte-like cells form a blood–cerebrospinal fluid barrier in the circumventricular organs of the mouse brain, J. Comp. Neurol., 2013, vol. 521, pp. 3389–3405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda, E., Almonacid, J.A., Rodriguez, S., Perez, J., Hein, S., Cifuentes, M., Fernández-Llebrez, P., and Rodríguez, E.M., Searching for specific binding sites of the secretory glycoproteins of the subcommissural organ, Microsc. Res. Tech., 2001, vol. 52, pp. 541–551.

    Article  CAS  PubMed  Google Scholar 

  • Németh, A. and Längst, G., Chromatin organization and the mammalian nucleolus, in: Proteins of the Nucleolus. Regulation, Translocation, and Biomedical Functions, Netherlands: Springer, 2013, pp. 119–148.

    Google Scholar 

  • Nurnberger, F. and Schoniger, S., Presence and functional significance of neuropeptide and neurotransmitter receptors in subcommissural organ cells, Microsc. Res. Tech., 2001, vol. 52, pp. 534–540.

    Article  CAS  PubMed  Google Scholar 

  • Parlato, R. and Kreiner, G., Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle? J. Mol. Med. (Berlin), 2013, vol. 91, pp. 541–547.

    Article  CAS  Google Scholar 

  • Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, 6th ed., Elsevier Inc., 2007.

    Google Scholar 

  • Pena, E., Berciano, M.T., Fernandez, R., Ojeda, J.L., and Lafarga, M., Neuronal body size correlates with the number of nucleoli and cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons, J. Comp. Neurol., 2001, vol. 430, pp. 250–263.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, E.M., Blázquez, J.L., and Guerra, M., The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid, Peptides, 2010, vol. 31, pp. 757–776.

    Article  PubMed  Google Scholar 

  • Sufieva, D.A., Kirik, O.V., Alekseeva, O.S., and Korzhevskii, D.E., Intermediate filament proteins in tanycytes of the third cerebral ventricle in rats during postnatal ontogenesis, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 6, pp. 490–498.

    Article  CAS  Google Scholar 

  • Tajrishi, M.M., Tuteja, R., and Tuteja, N., Nucleolin, the most abundant multifunctional phosphoprotein of nucleolus, Commun. Integr. Biol., 2011, vol. 4, pp. 267–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treré, D., Ceccarelli, C., Montanaro, L., Tosti, E., and Derenzini, M., Nucleolar size and activity are related to pRb and p53 status in human breast cancer, J. Histochem. Cytochem., 2004, vol. 52, pp. 1601–1607.

    Article  PubMed  Google Scholar 

  • Wallace, H., Nucleolar growth and fusion during cellular differentiation, J. Morphol., 1963, vol. 112, pp. 261–278.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe-Susaki, K., Takada, H., Enomoto, K., Miwata, K., Ishimine, H., Intoh, A., Ohtaka, M., Nakanishi, M., Sugino, H., Asashima, M., and Kurisaki, A., Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells, Stem Cells, 2014, vol. 32, pp. 3099–3111.

    Article  CAS  PubMed  Google Scholar 

  • Zenit-Zhuravleva, E.G., Polkovnichenko, E.M., Lushnikova, A.A., Treshchalina, E.M., Bukaeva, I.A., and Raikhlin, N.T., Nucleophosmin and nucleolin: encoding genes and expression in various human and animal tissues, Mol. Med., 2012, vol. 4, pp. 24–31.

    Google Scholar 

  • Zharskaya, O.O. and Zatsepina, O.V., Dynamics and mechanisms of the nucleolus reorganization during mitosis, Tsitologiia, 2007, vol. 49, no. 5, pp. 355–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Korzhevskii.

Additional information

Original Russian Text © D.A. Sufieva, O.V. Kirik, D.E. Korzhevskii, 2018, published in Tsitologiya, 2018, Vol. 60, No. 1, pp. 21–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufieva, D.A., Kirik, O.V. & Korzhevskii, D.E. Nucleolin and Nucleoli in Ependymocytes and Tanycytes of the Third Ventricle of the Rat Brain. Cell Tiss. Biol. 12, 167–173 (2018). https://doi.org/10.1134/S1990519X18020116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18020116

Keywords

Navigation