Advertisement

Cell and Tissue Biology

, Volume 12, Issue 2, pp 167–173 | Cite as

Nucleolin and Nucleoli in Ependymocytes and Tanycytes of the Third Ventricle of the Rat Brain

  • D. A. Sufieva
  • O. V. Kirik
  • D. E. Korzhevskii
Article
  • 14 Downloads

Abstract

The aim of the present study was to compare structure of the nucleoli of ependymocytes, tanycytes, and secretory cells of the subcommissural organ using immunohistochemical staining for nucleolin and confocal laser microscopy. The study was performed in samples from the diencephalon of adult male Wistar rats (n = 6). The samples were fixed in zinc–ethanol–formaldehyde, a fixative providing a high level of preservation of antigen determinants. In the present study, we estimated diameters of nucleoli and their number in various types of cells lining the third ventricle. We compared for the first time the nucleoli of different subpopulations of tanycytes and report data on the distribution of nucleolin protein in the cells lining the ventricles. The content and location of nucleolin reflect the functional state of the cell. Our data will promote understanding of the interrelationships between the indices of the nucleolar apparatus and the functional state of the cell under various conditions, including stress, neoplastic transformation, and other pathological conditions.

Keywords

nucleolus nucleolin ependymocytes tanycytes subcommissural organ immunohistochemistry confocal laser microscopy 

Abbreviation

SCO

subcommissural organ

CSF

cerebrospinal fluid

CVO

circumventricular organs

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Z. and Xu, X., Roles of nucleolin, focus on cancer and anti-cancer therapy, Saudi Med., 2016, vol. J 37, pp. 1312–1318.CrossRefGoogle Scholar
  2. Del Bigio, M.R., Ependymal cells: biology and pathology, Acta Neuropathol., 2010, vol. 119, pp. 55–73.CrossRefPubMedGoogle Scholar
  3. Derenzini M., Brighenti, E., Donati, G., Vici, M., Ceccarelli, C., Santini, D., Taffurelli, M., Montanaro, L., and Treré, D., The P53-mediated sensitivity of cancer cells to chemotherapeutic agents is conditioned by the status of the retinoblastoma protein, J. Pathol., 2009, vol. 219, pp. 373–382.CrossRefPubMedGoogle Scholar
  4. Farley, K.I., Surovtseva, Y., Merkel, J., and Baserga, S.J., Determinants of mammalian nucleolar architecture, Chromosoma, 2015, vol. 124, pp. 323–331.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Goodman, T. and Hajihosseini, M.K., Hypothalamic tanycytes— masters and servants of metabolic, neuroendocrine, and neurogenic functions, Front. Neurosci., 2015, vol. 9, pp. 2–9.CrossRefGoogle Scholar
  6. Grondona, J.M., Hoyo-Becerra, C., Visser, R., Fernández-Llebrez, P., and López-Ávalos, M.D., The subcommissural organ and the development of the posterior commissure, Int. Rev. Cell Mol. Biol., 2012, vol. 296, pp. 63–137.CrossRefPubMedGoogle Scholar
  7. Guerra, M.M., González, C., Caprile, T., Jara, M., Vío, K, Muñoz, R.I., Rodríguez, S., and Rodríguez, E.M., Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis, Front. Cell. Neurosci., 2015, vol. 9, pp. 1–17.CrossRefGoogle Scholar
  8. Hetman, M. and Pietrzak, M., Emerging roles of the neuronal nucleolus, Trends Neurosci., 2012, vol. 35, pp. 305–314.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Holmberg Olausson, K., Elsir, T., Moazemi Goudarzi, K., Nistér, M., and Lindström, M.S., NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape, Sci. Rep., 2015, vol. 5, pp. 1–15.CrossRefGoogle Scholar
  10. Joly, J.S., Osório, J., Alunni, A., Auger, H., Kano, S., and Rétaux, S., Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs, Semin. Cell Dev. Biol., 2007, vol. 18, pp. 512–524.CrossRefPubMedGoogle Scholar
  11. Kaur, C. and Ling, E.A., The circumventricular organs, Histol. Histopathol., 2017, vol. 32, pp. 879–892.PubMedGoogle Scholar
  12. Kirik, O.V. and Korzhevskii, D.E., Vimentin in ependymal cells and subventricular proliferative zone cells of rat telencephalon, Bull. Exp. Biol. Med., 2013, vol. 154, pp. 553–557.CrossRefPubMedGoogle Scholar
  13. Korzhevskii, D.E., Choroid plexus and structural organization of blood-CSF barrier in human, Reg. Krovoobr. Mikrotsirk., 2003, vol. 2, no. 1, pp. 5–14.Google Scholar
  14. Lafarga, M., Berciano, M.T., Saurez, I., Andres, M.A., and Berciano, J., Reactive astroglia–neuron relationships in the human cerebellar cortex: a quantitative, morphological and immunocytochemical study in Creutzfeldt–Jakob disease, Int. J. Dev. Neurosci., 1993, vol. 11, pp. 199–213.CrossRefPubMedGoogle Scholar
  15. Langlet, F., Mullier, A., Bouret, S.G., Prevot, V., and Dehouck, B., Tanycyte-like cells form a blood–cerebrospinal fluid barrier in the circumventricular organs of the mouse brain, J. Comp. Neurol., 2013, vol. 521, pp. 3389–3405.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Miranda, E., Almonacid, J.A., Rodriguez, S., Perez, J., Hein, S., Cifuentes, M., Fernández-Llebrez, P., and Rodríguez, E.M., Searching for specific binding sites of the secretory glycoproteins of the subcommissural organ, Microsc. Res. Tech., 2001, vol. 52, pp. 541–551.CrossRefPubMedGoogle Scholar
  17. Németh, A. and Längst, G., Chromatin organization and the mammalian nucleolus, in: Proteins of the Nucleolus. Regulation, Translocation, and Biomedical Functions, Netherlands: Springer, 2013, pp. 119–148.Google Scholar
  18. Nurnberger, F. and Schoniger, S., Presence and functional significance of neuropeptide and neurotransmitter receptors in subcommissural organ cells, Microsc. Res. Tech., 2001, vol. 52, pp. 534–540.CrossRefPubMedGoogle Scholar
  19. Parlato, R. and Kreiner, G., Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle? J. Mol. Med. (Berlin), 2013, vol. 91, pp. 541–547.CrossRefGoogle Scholar
  20. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, 6th ed., Elsevier Inc., 2007.Google Scholar
  21. Pena, E., Berciano, M.T., Fernandez, R., Ojeda, J.L., and Lafarga, M., Neuronal body size correlates with the number of nucleoli and cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons, J. Comp. Neurol., 2001, vol. 430, pp. 250–263.CrossRefPubMedGoogle Scholar
  22. Rodríguez, E.M., Blázquez, J.L., and Guerra, M., The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid, Peptides, 2010, vol. 31, pp. 757–776.CrossRefPubMedGoogle Scholar
  23. Sufieva, D.A., Kirik, O.V., Alekseeva, O.S., and Korzhevskii, D.E., Intermediate filament proteins in tanycytes of the third cerebral ventricle in rats during postnatal ontogenesis, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 6, pp. 490–498.CrossRefGoogle Scholar
  24. Tajrishi, M.M., Tuteja, R., and Tuteja, N., Nucleolin, the most abundant multifunctional phosphoprotein of nucleolus, Commun. Integr. Biol., 2011, vol. 4, pp. 267–275.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Treré, D., Ceccarelli, C., Montanaro, L., Tosti, E., and Derenzini, M., Nucleolar size and activity are related to pRb and p53 status in human breast cancer, J. Histochem. Cytochem., 2004, vol. 52, pp. 1601–1607.CrossRefPubMedGoogle Scholar
  26. Wallace, H., Nucleolar growth and fusion during cellular differentiation, J. Morphol., 1963, vol. 112, pp. 261–278.CrossRefPubMedGoogle Scholar
  27. Watanabe-Susaki, K., Takada, H., Enomoto, K., Miwata, K., Ishimine, H., Intoh, A., Ohtaka, M., Nakanishi, M., Sugino, H., Asashima, M., and Kurisaki, A., Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells, Stem Cells, 2014, vol. 32, pp. 3099–3111.CrossRefPubMedGoogle Scholar
  28. Zenit-Zhuravleva, E.G., Polkovnichenko, E.M., Lushnikova, A.A., Treshchalina, E.M., Bukaeva, I.A., and Raikhlin, N.T., Nucleophosmin and nucleolin: encoding genes and expression in various human and animal tissues, Mol. Med., 2012, vol. 4, pp. 24–31.Google Scholar
  29. Zharskaya, O.O. and Zatsepina, O.V., Dynamics and mechanisms of the nucleolus reorganization during mitosis, Tsitologiia, 2007, vol. 49, no. 5, pp. 355–369.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Sufieva
    • 1
  • O. V. Kirik
    • 1
  • D. E. Korzhevskii
    • 1
  1. 1.Institute of Experimental MedicineSt. PetersburgRussia

Personalised recommendations