Advertisement

Cell and Tissue Biology

, Volume 12, Issue 2, pp 127–134 | Cite as

Changes in the Architectonics and Morphometric Characteristics of Erythocytes under the Influence of Magnetite Nanoparticles

  • S. N. Pleskova
  • E. E. Gornostaeva
  • R. N. Kryukov
  • A. V. Boryakov
  • S. Yu. Zubkov
Article
  • 10 Downloads

Abstract

A new high-precision technique for calculating the ratio of the erythrocyte area/volume using atomic-force microscopy has been developed. The method was tested on erythrocytes of healthy donors. Scanning electron microscopy, atomic-force microscopy, and X-ray microanalysis revealed that magnetite nanoparticles can interact with erythrocyte membranes in vitro. This interaction resulted in the development of a pathology of erythrocytes typical for poikilocytosis and anisocytosis. When the magnetite was incubated with erythrocytes in a serum-free medium, nanoparticles aggregated.

Keywords

erythrocytes area/volume ratio magnetite nanoparticles archytectonics atomic-force microscopy scanning electron microscopy X-ray microanalysis 

Abbreviation

AFM

atomic-force microscopy

MNPs

magnetite nanoparticles

SEM

scanning electron microscopy

PBS

phosphate buffer saline

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asghari-Khiavi, M., Wood, B.R., Mechler, A., Bambery, K.R., Buckingham, D.W., Cooke, B.M., and McNaughton, D., Correlation of atomic force microscopy and raman micro-spectroscopy to study the effects of ex vivo treatment procedures on human red blood cells, Analyst, 2010, vol. 135, pp. 525–530.CrossRefPubMedGoogle Scholar
  2. Borovskaya, M.K., Kuznetsov, E.E., Gorokhova, V.G., Koriakina, L.B., Kurilskaya, T.E., and Pivovarov, Yu.I., Structural and functional characteristics of membrane’s erythrocyte and its change at pathologies of various genesis, Bull. VSNTs SO RAMN, 2010, vol. 3, no. 73, pp. 334–354.Google Scholar
  3. Bulte, J.W. and Kraitchman, D.L., Monitoring cell therapy using iron oxide MR contrast agents, Curr. Pharm. Biotechnol., 2004, vol. 5, pp. 567–584.CrossRefPubMedGoogle Scholar
  4. Duran, N., Silveira, C.P., Duran, M., Stйfani, D., and Martinez, T., Silver nanoparticle protein corona and toxicity: a mini-review, J. Nanobiotechnol., 2015, vol. 13, pp. 1–17.CrossRefGoogle Scholar
  5. German, S.V., Inozemtseva, O.A., Markin, A.V., Metvally, H., Khomutov, G.B., and Gorin, D.A., Synthesis of magnetite hydrosols in inert atmosphere, Kolloid. Zh., 2013a, vol. 75, no. 4, p. 534.Google Scholar
  6. German, S.V., Inozemtseva, O.A., Navolokin, N.A., Pudovkina, E.E., Zuev, V.V., Volkova, E.K., Bucharskaya, A.B., Pleskova, S.N., Maslyakova, G.N., and Gorin, D.A., Synthesis of magnetite hydrosols and assessment of their impact on living systems at the cellular and tissue levels using MRI and morphological investigation, Ross. Nanotekhnol., 2013b, vol. 8, no. 7–8, pp. 573–580.CrossRefGoogle Scholar
  7. German, S.V., Navolokin, N.A., Kuznetsova, N.R., Zuev, V.V., Inozemtseva, O.A., Anis’kov, A.A., Volkova, E.K., Bucharskaya, A.B., Maslyakova, G.N., Fakhrullin, R.F., Terentyuk, G.S., Vodovozova, E.L., and Gorin, D.A., Liposomes loaded with hydrophilic magnetite nanoparticles: preparation and application as contrast agents for magnetic resonance imaging, Colloids Surfaces B: Biointerfaces, 2015, vol. 135, pp. 109–115.CrossRefPubMedGoogle Scholar
  8. Grancharov, S.G., Zeng, H., Sun, S., Wang, S.X., O’Brien, S., Murray, C.B., Kirtley, J.R., and Held, G.A., Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B, 2005, vol. 109, pp. 13030–13035.CrossRefPubMedGoogle Scholar
  9. Guo, Q., Liu, Y., Xu, K., Ren, K., and Sun, W.G., Mouse lymphatic endothelial cell targeted probes: anti-LYVE-1 antibody-based magnetic nanoparticles, Int. J. Nanomed., 2013, vol. 9, pp. 2273–2284.CrossRefGoogle Scholar
  10. Kozinets, G.I., Shishkanov, Z.G., Sarycheva, T.G., Novotrakhana, Yu.K., Diaghilev, O.A., and Protsenko, D.D., Kletki krovi i kostnogo mozga. Atlas (Cells of Blood and Bone Marrow: Atlas), Moscow: Med. Inform. Agent., 2004.Google Scholar
  11. Leonova, V.G., Analiz eritrotsitarnykh populyatsy v ontogeneze cheloveka (Analysis of Erythrocyte Populations in Human Ontogeny), Novosibirsk: Nauka, 1987.Google Scholar
  12. Nasiri, R., Hamzehalipour Almaki, J., Idris, A.B., Abdul Majid, F.A., Nasiri, M., Salouti, M., Irfan, M., Amini, N., and Marvibaigi, M., In vitro evaluation of actively targetable superparamagnetic nanoparticles to the folate receptor positive cancer cells, Mater. Sci. Eng. C, 2016, vol. 69, pp. 1147–1158.CrossRefGoogle Scholar
  13. Neamtu, J. and Verga, N., Magnetic nanoparticles for magneto-resonance imaging and targeted drug delivery, Digest J. Nanomat. Biostruct., 2011, vol. 6, pp. 969–978.Google Scholar
  14. Novitskii, V.V., Ryazantseva, N.V., Stepovaya, E.A., Bystritskii, L.D., and Tkachenko, S.B., Atlas. Klinicheskii patomorfoz eritrotsita (Clinical Pathomorphology of Erythrocyte: Atlas), Tomsk: Izd. Dom Tomsk Univ., Moscow:: GEOTAR-MED, 2003.Google Scholar
  15. O’Reilly, M., McDonnell, L., and O’Mullane, J., Quantification of red blood cells using atomic force microscopy, Ultramicroscopy, 2001, vol. 86, pp. 107–112.CrossRefPubMedGoogle Scholar
  16. Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J., Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 167–181.CrossRefGoogle Scholar
  17. Pershina, A.G., Sazonov, A.E., and Milto, I.V., Application of magnetic nanoparticles in biomedicine, Byull. Sib. Med., 2008, vol. 2, pp. 70–78.Google Scholar
  18. Pleskova, S.N., Atomno-silovaya mikroskopiya v biologicheskikh i meditsinskikh issledovaniyakh (Atomic-Force Microscopy in Biology and Medicine), Dolgoprudnyi: Izd. Dom Intellekt, 2011.Google Scholar
  19. Pleskova, S.N., Pudovkina, E.E., Mikheeva, E.R., and Gorshkova, E.N., Interactions of quantum dots with donor blood erythrocytes in vitro, Bull. Exp. Biol. Med., 2013, vol. 156, no. 3, pp. 384–388.CrossRefGoogle Scholar
  20. Skorkina, M.Yu., Fedorova, M.Z., Sladkova, E.A., Derkachev, R.V., and Zabinyakov, N.A., Effect of iron nanoparticles on the respiratory function of blood, Yaroslav. Ped. Vestn., 2010, vol. 3, pp. 75–79.Google Scholar
  21. Yakusheva, E.V., Miroshnikov, S.A., and Kvan, O.V., Estimation of influence of metal nanoparticles on morphological parameters of peripheral blood of animals, Vestn. Orenburg. Gos. Univ., 2013, vol. 12, no. 161, pp. 203–207.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Pleskova
    • 1
  • E. E. Gornostaeva
    • 2
  • R. N. Kryukov
    • 1
  • A. V. Boryakov
    • 2
  • S. Yu. Zubkov
    • 1
  1. 1.Research and Education Center Physics for Solid State NanostructuresNizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.New Materials and Resource-Saving Technologies Center of Collective Use of the Scientific Research Institute of Chemistry of Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations