Advertisement

Cell and Tissue Biology

, Volume 12, Issue 2, pp 112–119 | Cite as

Behavioral Changes of Multipotent Mesenchymal Stromal Cells in Contact with Synthetic Calcium Phosphates in vitro

  • L. S. Litvinova
  • V. V. Shupletsova
  • O. G. Khaziakhmatova
  • K. A. Yurova
  • V. V. Malashchenko
  • E. S. Melashchenko
  • N. M. Todosenko
  • M. Yu. Khlusova
  • Yu. P. Sharkeev
  • E. G. Komarova
  • M. B. Sedelnikova
  • E. O. Shunkin
  • I. A. Khlusov
Article
  • 17 Downloads

Abstract

Migration, proliferation, and osteogenic differentiation of human adipose-derived (AD) multipotent mesenchymal stromal cells (MMSCs) during in vitro modeling of indirect contact with calcium phosphate (CP) or nanoparticles of synthetic hydroxyapatite (HA) have been studied. The results were registered with electrode (real-time cell analysis, RTCA) or visual (Cell-IQ) systems of long-term observation of cell cultures. Bulk specimens were use in a Cell-IQ® v2 MLF device as pure titanium substrates (10 × 10 × 1 mm3) covered by a CP relief (roughness index Ra = 2.4–4.4 μm) bilateral coating that was prepared by the micr-arc method from an aqueous solution of orthophosphoric acid (20 wt %), calcium carbonate (9 wt %), and synthetic HA (6 wt %). HA crystallites (1 mg/mL) were fabricated by mechanochemical synthesis and served as an irritant in RTCA investigation. The Cell-IQ system identified a 3.5- to 10-fold decrease in cell number at the interface with CP coatings with differing roughness during 14-day cell culturing. After 21 days, it was accompanied by a weak reduction of MMSC antigen expression (CD73, CD90, and CD105) as opposed to an increase in MMSC osteogenic differentiation and intercellular-matrix mineralization. In turn, HA nanodispersion reduced the speed of MMSC migration by 1.5 times (P < 0.001) during 25-h RTCA recording, which simulated cell invasion through the microporous membrane (8-μm diameter). Inhibition of migration and cell division with increased osteogenic differentiation of MMSCs has been suggested to be a possible effect of biodegradation products of synthetic CP materials.

Keywords

stromal cells of human adipose tissue motility trafficking membrane markers osteogenic differentiation hydroxylapatite calcium phosphate coating microtopography 

Abbreviation

HA

hydroxyapatite

CP

calcium phosphate

MI

cell-migration index

AT

adipose tissue

MMSC

multipotent mesenchymal stromal cell

EDTA

ethylenediaminetetraacetic acid

RTCA

real-time cell analysis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atienza, J.M., Yu, N., Kirstein, S.L., Kirstein, S.L., Xi, B., Wang, X., Xu, X., and Abassi, Y.A., Dynamic and label-free cell based assays using the real-time cell electronic sensing system, Assay Drug Dev. Technol., 2006, vol. 4, pp. 597–607. doi 10.1089/adt.2006.4.597CrossRefPubMedGoogle Scholar
  2. Bourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K., and Gimble, J.M., Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT), Cytotherapy, 2013, vol. 15, pp. 641–648. doi 10.1016/j.jcyt.2013.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chaikina, M.V., Uvarov, N.F., Ulihin, A.S., and Khlusov, I.A., Mechanochemical synthesis of nanosized functional materials with the apatite-type structure, Vopr. Materialoved., 2008, vol. 54, no. 2, pp. 219–232.Google Scholar
  4. de Groot, K., Bioceramics consisting of calcium phosphate salts, Biomaterials, 1980, vol. 1, no. 1, pp. 47–50.CrossRefPubMedGoogle Scholar
  5. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, Dj., and Horwitz, E., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 2006, vol. 8, pp. 315–317. doi 10.1080/14653240600855905PubMedGoogle Scholar
  6. Gnedenkov, S.V., Scharkeev, Yu.P., Sinebryukhov, S.L., Khrisanfova, O.A., Legostaeva, E.V., Zavidnaya, A.G., Puz’, A.V., and Khlusov, I.A., Formation and properties of bioactive surface layers on titanium, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 5, pp. 474–481.CrossRefGoogle Scholar
  7. Jing, D., Fonseca, A.-V., Alakel, N., Fierro, F.A., Muller, K., Bornhauser, M., Ehninger, G., Corbeil, D., and Ordemann, R., Hematopoietic stem cells in co-culture with mesenchymal stromal cells—modeling the niche compartments in vitro, Haematologica, 2010, vol. 95, pp. 542–550. doi 10.3324/haematol.2009.010736CrossRefPubMedPubMedCentralGoogle Scholar
  8. Karlov, A.V. and Khlusov, I.A., A dependence of reparative osteogenesis processes on surface properties of implants for osteosynthesis, Genii Ortoped., 2003, vol. 3, pp. 46–51.Google Scholar
  9. Karlov, A.V., Khlusov, I.A., Pozhen’ko, N.S., and Chaikina, M.V., In vitro regulation of cell behavior by calcium phosphates synthesized by the mechanochemical method, Bull. Exp. Biol. Med., 2004, vol. 138, no. 3, pp. 316–320.CrossRefPubMedGoogle Scholar
  10. Khlusov, I.A., Karlov, A.V., Pozhen’ko, N.S., Sukhodolo, I.V., and Khlusova, M.Y., Relationship between osteogenic characteristics of bone marrow cells and calcium phosphate surface relief and solubility, Bull. Exp. Biol. Med., 2006, vol. 141, no. 1, pp. 99–103.CrossRefPubMedGoogle Scholar
  11. Khlusov, I.A., Khlusova, M.Yu., Zaitsev, K.V., Kolokol’tsova, T.D., Sharkeev, Yu.P., Pichugin, V.F., Legostaeva, E.V., Trofimova, I.E., Klimov, A.S., and Zhdanova, A.I., Pilot in vitro study of the parameters of artificial niche for osteogenic differentiation of human stromal stem cell pool, Bull. Exp. Biol. Med., 2011, vol. 150, no. 4, pp. 535–542. doi 10.1007/s10517-011-1184-4CrossRefPubMedGoogle Scholar
  12. Klein, C., de Groot, K., Chen, W., Li, Y., and Zhang, X., Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues, Biomaterials, 1994, vol. 15, pp. 31–34.CrossRefPubMedGoogle Scholar
  13. Legostaeva, E.V., Kulyashova, K.S., Komarova, E.G., Epple, M., Sharkeev, Y.P., and Khlusov, I.A., Physical, chemical and biological properties of micro-arc deposited calcium phosphate coatings on titanium and zirconiumniobium alloy, Materialwiss. Werkst., 2013, vol. 44, pp. 188–197.CrossRefGoogle Scholar
  14. Lepik, K.V., Muslimov, A.R., Timin, A.S., Sergeev, V.S., Romanyuk, D.S., Moiseev, I.S., Popova, E.V., Radchenko, I.L., Vilesov, A.D., Galibin, O.V., Sukhorukov, G.B., and Afanasyev, B.V., Mesenchymal stem cell magnetization: magnetic multilayer microcapsule uptake, toxicity, impact on functional properties, and perspectives for magnetic delivery, Adv. Healthcare Mater., 2016, vol. 5, pp. 3182–3190. doi 10.1002/adhm.201600843CrossRefGoogle Scholar
  15. Litvinova, L.S., Shupletsova, V.V., Dunets, N.A., Khaziakhmatova, O.G., Yurova, K.A., Khlusova, M.Yu., Slepchenko, G.B., Cherempey, E.G., Sharkeev, Yu.P., Komarova, E.G., Sedelnikova, M.B., and Khlusov, I.A., Imbalance of morphofunctional responses of Jurkat T lymphoblasts at short-term culturing with relief zinc-or copper-containing calcium phosphate coating on titanium, Dokl. Biochem. Biophys., 2017, vol. 472, pp. 35–39. doi 10.7868/S0869565217030252CrossRefPubMedGoogle Scholar
  16. Meindl, C., Absenger, M., Roblegg, E., and Fröhlich, E., Suitability of cell-based label-free detection for cytotoxicity screening of carbon nanotubes, Biomed. Res. Int., 2013, p. 564804. doi 10.1155/2013/564804Google Scholar
  17. Moniri, M.R., Young, A., Reinheimer, K., Rayat, J., Dai, L-J., and Warnock, G.L., Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA), Cytotechnology, 2015, vol. 67, pp. 379–386. doi 10.1007/s10616-014-9692-5CrossRefGoogle Scholar
  18. Oreffo, R.O.C., Driessens, F.C.M., Planell, J.A., and Triffitt, J.T., Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements, Biomaterials, 1998, vol. 19, pp. 1845–1854.CrossRefPubMedGoogle Scholar
  19. Ozturk, F., Toy, E., Hatunoglu, E., Bozkurt, B.S., and Hakki, S.S., Real-time cell analysis of cytotoxicity of orthodontic cements on gingival fibroblasts, J. Orthod. Res., 2014, vol. 2, pp. 32–37. doi 10.4103/2321-3825.125922CrossRefGoogle Scholar
  20. Rosenman, G. and Aronov, D., Wettability engineering and bioactivation of hydroxyapatite nanoceramics, Int. Tech. Proc. Nanotech. Conf. Boston., 2006, vol. 2, pp. 91–94.Google Scholar
  21. Taichman, R.S., Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche, Blood, 2005, vol. 105, pp. 2631–2639. doi 10.1182/blood-2004-06-2480CrossRefPubMedGoogle Scholar
  22. Teng, Z., Kuang, X., Wang, J., and Zhang, X., Real-time cell analysis—a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity, J. Virol. Methods, 2013, vol. 193, pp. 364–370. doi 10.1016/j.jviromet.2013.06.034CrossRefPubMedGoogle Scholar
  23. Theman, T.A. and Collins, M.T., The role of the calciumsensing receptor in bone biology and pathophysiology, Curr. Pharm. Biotechnol., 2009, vol. 10, pp. 289–301.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., Harris, S., Wiedemann, L.M., Mishina, Y., and Li, L., Identification of the haematopoietic stem cell niche and control of the niche size, Nature, 2003, vol. 425, pp. 836–841.CrossRefPubMedGoogle Scholar
  25. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H., Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng., 2001, vol. 7, pp. 211–228.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. S. Litvinova
    • 1
  • V. V. Shupletsova
    • 1
  • O. G. Khaziakhmatova
    • 1
  • K. A. Yurova
    • 1
  • V. V. Malashchenko
    • 1
  • E. S. Melashchenko
    • 1
  • N. M. Todosenko
    • 1
  • M. Yu. Khlusova
    • 2
  • Yu. P. Sharkeev
    • 3
    • 4
  • E. G. Komarova
    • 4
  • M. B. Sedelnikova
    • 4
  • E. O. Shunkin
    • 1
  • I. A. Khlusov
    • 1
    • 5
  1. 1.Laboratory of Immunology and Cell BiotechnologyImmanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Pathophysiology DepartmentSiberian State Medical UniversityTomskRussia
  3. 3.Experimental Physics DepartmentTomsk Polytechnic UniversityTomskRussia
  4. 4.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  5. 5.Morphology and General Pathology DepartmentSiberian State Medical UniversityTomskRussia

Personalised recommendations