Skip to main content
Log in

Quantum Dots based on Indium Phosphide (InP): the Effect of Chemical Modifications of the Organic Shell on Interaction with Cultured Cells of Various Origins

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

CdSe and CdTe-based semiconductor fluorescent nanocrystals, also called quantum dots (QDs), attract the attention of biologists due to their wide range of emission in a visible light interval, high fluorescence quantum yield and photostability. However, their application is limited because of possible toxicity of cadmium. Indeed, there is a probability of metal leakage from QDs cores as a result of damage of both inorganic and organic layers of shells covering QDs. An alternative to cadmium QDs could be nanostructures having as a core, for example, non-toxical indium phosphide (InP), also emitting in the visible region of the spectrum. At present, there is few works on the use of these particles in biology. In this study, a comparative analysis of the spectral-luminescent properties of two InP/ZnS-QDs samples coated with PEG carrying- COOH or -NH2 functional groups was performed. The obtained data were compared with the characteristics of CdSe/ZnS-QDs coated with PEG. The photophysical properties of all QDs in aqueous solution corresponded to the information claimed by manufacturers, but the fluorescence quantum yield of InP-based nanoparticles was found to be lower than that of CdSe-QDs. We also show that the photoluminescence of all types of QDs at pH 4.0 was lower than at pH 7.4, while the decrease in fluorescence intensity was minimal in the case of QDs-PEG-COOH. Studying the uptake of all three types of QDs by J774 macrophages, we found that the fluorescence spectra of internalized QDs do not change in comparison with those in solution. All three types of QDs after 24 hours of incubation were accumulated in the cells, but while QDs-NH2 and QDs without reactive groups were detected mainly in vesicular-like discrete structures, the QDs-COOH were diffusely distributed throughout the cytoplasm. This fact indicates different mechanisms of interaction with cell membranes. In nonphagocytic HeLa cells all types of QDs behaved similarly, but the overall level of cells fluorescence was much lower. This may be due to both reduced nonspecific uptake and possible quenching of QDs fluorescence in acidic endolysosomes. Cytofluorimetric analysis of propidium iodide accumulation showed that after 24 hours incubation with all studied types of QDs as well as in control (no QDs), the proportion of dead HeLa cells did not exceed 10%. Thus, it has been demonstrated that non-toxic InP-based QDs can be used as an effective tool for biological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PL:

photoluminescence

QDs:

quantum dots

PEG:

polyethylene glycol

PI:

propidium iodide

References

  • Aldana, J., Wang, Y.A., and Peng, X., Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols, J. Am. Chem. Soc., 2001, vol. 123, pp. 8844–8850.

    Article  CAS  PubMed  Google Scholar 

  • Aldana, J., Lavelle, N., Wang, Y.J., and Peng, X.G., Sizedependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals, J. Am. Chem. Soc., 2005, vol. 127, pp. 2496–2504.

    Article  CAS  PubMed  Google Scholar 

  • Avellini, T., Amelia, M., Credi, A., and Silvi, S., Effect of protons on CdSe and CdSe–ZnS nanocrystals in organic solution, Langmuir, 2013, vol. 29, pp. 13352–13358.

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva, T.N., Salova, A.V., Leontieva, E.A., Mozhenok, T.P., Kornilova, E.S., and Krolenko, S.A., Untargeted quantum dots in confocal microscopy of living cells, Cell Tissue Biol., 2009, vol. 3, no. 6, pp. 551–558.

    Article  Google Scholar 

  • Bentzen, E.L., Tomlinson, I.D., Mason, J., Gresch, P., Warnement, M.R., Wright, D., Sanders-Bush, E., Blakely, R., and Rosenthal, S.J., Surface modification to reduce nonspecific binding of quantum dots in live cell assays, Bioconjug. Chem., 2005, vol. 16, pp. 1488–1494.

    Article  CAS  PubMed  Google Scholar 

  • Biju, V., Makita, Y., Sonoda, A., Yokoyama, H., Baba, Y., and Ishikawa, M., Temperature-sensitive photoluminescence of CdSe quantum dot clusters, J. Phys. Chem. B, 2005, vol. 109, pp. 13899–13905.

    Article  CAS  PubMed  Google Scholar 

  • Boldt, K., Bruns, O.T., Gaponik, N., and Eychmüller, A., Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers, J. Phys. Chem. B, 2006, vol. 110, pp. 1959–1963.

    Article  CAS  PubMed  Google Scholar 

  • Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Semiconductor nanocrystals as fluorescent biological labels, Science, 1998, vol. 281, pp. 2013–2016.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S.J., Maysinger, D., Jain, M., Roder, B., Hackbarth, S., and Winnik, F.M., Long-term exposure to CdTe quantum dots causes functional impairments in live cells, Langmuir, 2007, vol. 23, pp. 1974–1980.

    Article  CAS  PubMed  Google Scholar 

  • Clift, M.J., Rothen-Rutishauser, B., Brown, D.M., Duffin, R., Donaldson, K., Proudfoot, L., Guy, K., and Stone, V., The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line, Toxicol. Appl. Pharmacol., 2008, vol. 232, pp. 418–427.

    Article  CAS  PubMed  Google Scholar 

  • Collinet, C., Stoter, M., Bradshaw, C.R., Samusik, N., Rink, J.C., Kenski, D., Habermann, B., Buchholz, F., Henschel, R., Mueller, M.S., Nagel, W.E., Fava, E., Kalaidzidis, Y., and Zerial, M., Systems survey of endocytosis by multiparametric image analysis, Nature, 2010, vol. 464, pp. 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R, Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B, 1997, vol. 101, pp. 9463–9475.

    Article  CAS  Google Scholar 

  • Derfus, A.M., Chan, W.C.W., and Bhatia, S.N., Probing the cytotoxicity of semiconductor quantum dots, Nano Lett., 2004, vol. 4, pp. 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Durisic, N., Godin, A.G., Walters, D., Grütter, P., Wiseman, P.W., and Heyes, C.D., Probing the “dark” fraction of core–shell quantum dots by ensemble and single particle pH-dependent spectroscopy, ACS Nano, 2011, vol. 5, pp. 9062–9073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteve-Turrillas, F.A. and Abad-Fuentes, A., Applications of quantum dots as probes in immunosensing of small-sized analytes, Biosens. Bioelectron., 2013, vol. 41, pp. 12–29.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Chan, W., and Nie, S., Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding, J. Biomed. Opt., 2002, vol. 7, pp. 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Hardman, R., A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ. Health Perspect., 2006, vol. 114, pp. 165–172.

    Article  PubMed  Google Scholar 

  • Hines, D.A. and Kamat, P.V., Recent advances in quantum dot surface chemistry, ACS Appl. Mat. Interfaces, 2014, vol. 6, pp. 3041–3057.

    Article  CAS  Google Scholar 

  • Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y.F., Ohta, T., Yasuhara, M., Suzuki, K., and Yamamoto, K., Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification, Nano Lett., 2004, vol. 4, pp. 2163–2169.

    Article  CAS  Google Scholar 

  • Kim, S., Fisher, B., Eisler, H.J., and Bawendi, M., Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures, Am. Chem. Soc., 2003, vol. 125, pp. 11466–11467.

    Article  CAS  Google Scholar 

  • Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Muñoz Javier, A., Gaub, H.E., Stölzle, S., Fertig, N., and Parak, W.J., Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett., 2005, vol. 5, pp. 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Ji, K., Kim, J., Park, C., Lim, K.H., Yoon, T.H., and Choi, K., Acute toxicity of two CdSe/ZnSe quantum dots with different surface coating in Daphnia magna under various light conditions, Environ. Toxicol., 2010, vol. 25, pp. 593–600.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B.R., Winiarz, J.G., Moon, J.-S., Lo, S.-Y., Huang, Y.-W., Aronstam, R.S., and Lee, H.-J., Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides, Colloids Surfaces B: Biointerfaces, 2013, vol. 111, pp. 162–170.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y.S., Sun, Y., Vernier, P.T., Liang, C.H., Chong, S.Y., and Gundersen, M.A., PH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells, J. Phys. Chem. C. Nanomater. Interfaces, 2007, vol. 111, pp. 2872–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo, D., Hu, L., Zeng, G., Chen, G., Wan, J., Yu, Z., Huang, Z., He, K., Zhang, C., and Cheng, M., Cadmiumcontaining quantum dots: properties, applications, and toxicity, Appl. Microbiol. Biotechnol., 2017, vol. 101, pp. 2713–2733.

    Article  CAS  PubMed  Google Scholar 

  • Muller, J., Lupton, J.M., Lagoudakis, P.G., Schindler, F., Koeppe, R., Rogach, A.L., Feldmann, J., Talapin, D.V., and Weller, H., Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement, Nano Lett., 2005, vol. 5, pp. 2044–2049.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal, S.J., Chang, J.C., Kovtun, O., McBride, J.R., and Tomlinson, I.D., Biocompatible quantum dots for biological applications, Chem. Biol., 2011, vol. 18, pp. 10–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryman-Rasmussen, J.P., Riviere, J.E., and MonteiroRiviere, N.A., Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes, J. Invest. Dermatol., 2006, vol. 127, pp. 143–153.

    Article  PubMed  Google Scholar 

  • Smith, A.M., Duan, H., Mohs, A.M., and Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug Deliver. Rev., 2008, vol. 60, pp. 1226–1240.

    Article  CAS  Google Scholar 

  • Soenen, S.J., Manshian, B.B., Aubert, T., Himmelreich, U., Demeester, J., De Smedt, S.C., Hens, Z., and Braeckmans, K., Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging, Chem. Res. Toxicol., 2014, vol. 27, pp. 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  • Tomasulo, M., Yildiz, I., and Raymo, F.M., PH-sensitive quantum dots, J. Phys. Chem., 2006, vol. B 110, pp. 3853–3855.

    Article  CAS  Google Scholar 

  • Tonti, S., Di Cataldo, S., Bottino, A., and Ficarra, E., An automated approach to the segmentation of Hep-2 cells for the indirect immunofluorescence ANA test, Comput. Med. Imaging Graph., 2015, vol. 40, pp. 62–69.

    Article  PubMed  Google Scholar 

  • Uyeda, H.T., Medintz, I.L., Jaiswal, J.K., Simon, S.M., and Mattoussi, H., Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores, Am. Chem. Soc., 2005, vol. 127, pp. 3870–3878.

    Article  CAS  Google Scholar 

  • Walker, G.W., Sundar, V.C., Rudzinski, C.M., Wun, A.W., Bawendi, M.G., and Nocera, D.G., Quantum-dot optical temperature probes, Appl. Phys. Lett., 2003, vol. 83, pp. 3555–3557.

    Article  CAS  Google Scholar 

  • Wuister, S.F., van Houselt, A., Donega, C.D.M., Vanmaekelbergh, D., and Meijerink, A., Temperature antiquenching of the luminescence from capped CdSe quantum dots, Angew. Chem. Int. Ed., 2004, vol. 43, pp. 3029–3033.

    Article  CAS  Google Scholar 

  • Yang, S., Zhao, P., Zhao, X., Qua, L., and Lai, X., InP and Sn:InP based quantum dot sensitized solar cells, J. Mater. Chem. A, 2015, vol. 3, pp. 21922–21929.

    Article  CAS  Google Scholar 

  • Young, K.T., Wang, Y., Roy, I., Rui, H., Swihart, M.T., Law, W.C., Kwak, S.K., Ye, L., Liu, J., Mahajan, S.D., and Reynolds, J.L., Preparation of quantum dot/drug nanoparticles formulations for traceable targeted delivery and therapy, Theranostics, 2012, vol. 2, pp. 681–694.

    Article  Google Scholar 

  • Yu, W.W., Qu, L., Guo, W., and Peng, X., Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 2003, vol. 15, pp. 2854–2860.

    CAS  Google Scholar 

  • Zhang, Y., Pan, H., Zhang, P., Gao, N., Lin, Y., Luo, Z., Li, P., Wang, C., Liu, L., Pang, D., Cai, L., and Ma, Y., Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional groupassociated endocytic pathways, Nanoscale, 2013, vol. 5, pp. 5919–5929.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, W., Zhang, C., Gao, Q., and Li, H., Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots, Microchim. Acta, 2012, vol. 176, pp. 101–107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kornilova.

Additional information

Original Russian Text © I.K. Litvinov, T.N. Belyaeva, A.V. Salova, N.D. Aksenov, E.A. Leontieva, A.O. Orlova, E.S. Kornilova, 2017, published in Tsitologiya, 2017, Vol. 59, No. 10, pp. 685–695.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinov, I.K., Belyaeva, T.N., Salova, A.V. et al. Quantum Dots based on Indium Phosphide (InP): the Effect of Chemical Modifications of the Organic Shell on Interaction with Cultured Cells of Various Origins. Cell Tiss. Biol. 12, 135–145 (2018). https://doi.org/10.1134/S1990519X18020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18020050

Keywords

Navigation