Skip to main content
Log in

Evaluation of methods of synchronization of cell division in yeast Saccharomyces cerevisiae

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Synchronization of cell division in yeast cultures of Saccharomyces cerevisiae is widely used in studies on regulation of eukaryotic gene expression and biochemical processes at different stages of the cell cycle. In this study, we compared the efficacy of modern widely used methodologies to achieve and assess the degree of synchronization of cell division in yeast. Based on the literature and our own data, we propose practical recommendations for synchronization of cell divisions in S. cerevisiae using chemical reagents (alpha-factor, hydroxyurea, nocodazole), and a genetic cell-cycle block (temperature-sensitive mutation cdc28-4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S.H., Tobe, B.T., Fitz, Gerald, J.N., Anderson, S.L., Acurio, A., and Kron, S.J., Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p, Mol. Biol. Cell., 2001, vol. 12, pp. 3589–3600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argueso, J.L., Westmoreland, J., Mieczkowski, P.A., Gawel, M., Petes, T.D., and Resnick, M.A., Double-strand breaks associated with repetitive DNA can reshape the genome, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 11845–11850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breeden, L.L., Alpha-factor synchronization of budding yeast, Methods Enzymol., 1997, vol. 283, pp. 332–341.

    Article  CAS  PubMed  Google Scholar 

  • Calvert, M.E., Lannigan, J.A., and Pemberton, L.F., Optimization of yeast cell cycle analysis and morphological characterization by multispectral imaging flow cytometry, Cytometry, 2008, vol. A 73, pp. 825–833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., and Davis, R.W., A genome-wide transcriptional analysis of the mitotic cell cycle, Mol. Cell., 1998, vol. 2, pp. 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Cid, V.J., Adamikova, L., Sanchez, M., Molina, M., and Nombela, C., Cell cycle control of septin ring dynamics in the budding yeast, Microbiology, 2001, vol. 147, pp. 1437–1450.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, S., Iyer, G., Tarquini, M., and Bissett, P., Nocodazole does not synchronize cells: implications for cellcycle control and whole-culture synchronization, Cell Tissue Res., 2006, vol. 324, pp. 237–242.

    Article  CAS  PubMed  Google Scholar 

  • Day, A., Schneider, C., and Schneider, B.L., Yeast cell synchronization, Methods Mol. Biol., 2004, vol. 241, pp. 55–76.

    PubMed  Google Scholar 

  • Egilmez, N.K., Chen, J.B., and Jazwinski, S.M., Preparation and partial characterization of old yeast cells, J. Gerontol., 1990, vol. 45, pp. B9–B17.

    Article  CAS  PubMed  Google Scholar 

  • Endo, K., Mizuguchi, M., Harata, A., Itoh, G., and Tanaka, K., Nocodazole induces mitotic cell death with apoptotic-like features in Saccharomyces cerevisiae, FEBS Lett., 2010, vol. 584, pp. 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  • Falbo, K.B., Alabert, C., Katou, Y., Wu, S., Han, J., Wehr, T., Xiao, J., He, X., Zhang, Z., Shi, Y., Shirahige, K., Pasero, P., and Shen, X., Involvement of a chromatin remodeling complex in damage tolerance during DNA replication, Nat. Struct. Mol. Biol., 2009, vol. 16, pp. 1167–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimura, H., Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae, Genetics, 1990, vol. 124, no. 2, pp. 275–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Futcher, B., Cell cycle synchronization, Methods Cell Sci., 1999, vol. 21, pp. 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Galli, A. and Schiestl, R.H., Hydroxyurea induces recombination in dividing but not in G1 or G2 cell cycle arrested yeast cells, Mutat. Res., 1996, vol. 354, pp. 69–75.

    Article  PubMed  Google Scholar 

  • Gerald, J.N., Benjamin, J.M., and Kron, S.J., Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair, J. Cell Sci., 2002, vol. 115, pp. 1749–1757.

    CAS  PubMed  Google Scholar 

  • Goranov, A.I., Cook, M., Ricicova, M., Ben-Ari, G., Gonzalez, C., Hansen, C., Tyers, M., and Amon, A., The rate of cell growth is governed by cell cycle stage, Genes Dev., 2009, vol. 23, pp. 1408–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goranov, A.I., Gulati, A., Dephoure, N., Takahara, T., Maeda, T., Gygi, S.P., Manalis, S., and Amon, A., Changes in cell morphology are coordinated with cell growth through the TORC1 pathway, Curr. Biol., 2013, vol. 23, pp. 1269–1279.

    Article  CAS  PubMed  Google Scholar 

  • Haase, S.B. and Lew, D.J., Flow cytometric analysis of DNA content in budding yeast, Methods Enzymol., 1997, vol. 283, pp. 322–332.

    Article  CAS  PubMed  Google Scholar 

  • Haase, S.B. and Reed, S.I., Improved flow cytometric analysis of the budding yeast cell cycle, Cell Cycle, 2002, vol. 1, pp. 132–136.

    Article  CAS  PubMed  Google Scholar 

  • Haber, J.E., Mating-type genes and MAT switching in Saccharomyces cerevisiae, Genetics, 2012, vol. 191, pp. 33–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell, L.H., Saccharomyces cerevisiae cell cycle, Bacteriol. Rev., 1974, vol. 38, pp. 164–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hur, J.Y., Park, M.C., Suh, K.Y., and Park, S.H., Synchronization of cell cycle of Saccharomyces cerevisiae by using a cell chip platform, Mol. Cells, 2011, vol. 32, pp. 483–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, C.W., Adams, A.E., Szaniszlo, P.J., and Pringle, J.R., Functions of microtubules in the Saccharomyces cerevisiae cell cycle, J. Cell Biol., 1988, vol. 107, pp. 1409–1426.

    Article  CAS  PubMed  Google Scholar 

  • Koc, A., Wheeler, L.J., Mathews, C.K., and Merrill, G.F., Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools, J. Biol. Chem., 2004, vol. 279, pp. 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Lengronne, A., Pasero, P., Bensimon, A., and Schwob, E., Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains, Nucleic Acids Res., 2001, vol. 29, pp. 1433–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lew, D.J. and Reed, S.I., Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins, J. Cell Biol., 1993, vol. 120, pp. 1305–1320.

    Article  CAS  PubMed  Google Scholar 

  • Lew, D.J. and Reed, S.I., Cell cycle control of morphogenesis in budding yeast, Curr. Opin. Genet. Dev., 1995, vol. 5, pp. 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Lorincz, A.T. and Reed, S.I., Sequence analysis of temperature-sensitive mutations in the Saccharomyces cerevisiae gene CDC28, Mol. Cell Biol., 1986, vol. 6, pp. 4099–4103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, W., Westmoreland, J.W., Gordenin, D.A., and Resnick, M.A., Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease, PLoS Genet., 2011, vol. 7, p. e1002059.

    Google Scholar 

  • Manukyan, A., Abraham, L., Dungrawala, H., and Schneider, B.L., Synchronization of yeast, Methods Mol. Biol., 2011, vol. 761, pp. 173–200.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, C.M., Cooper, K.F., and Winter, E., The Ama1-directed anaphase-promoting complex regulates the Smk1 mitogen-activated protein kinase during meiosis in yeast, Genetics, 2005, vol. 171, pp. 901–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendenhall, M.D., and Hodge, A.E., Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 1191–1243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelis, S. and Herskowitz, I., The A-factor pheromone of Saccharomyces cerevisiae is essential for mating, Mol. Cell Biol., 1988, vol. 8, pp. 1309–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neutzner, A. and Youle, R.J., Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae, J. Biol. Chem., 2005, vol. 280, pp. 18598–18603.

    Article  CAS  PubMed  Google Scholar 

  • Northam, M.R., Robinson, H.A., Kochenova, O.V., and Shcherbakova, P.V., Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae, Genetics, 2010, vol. 184, pp. 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly, N., Charbin, A., Lopez-Serra, L., and Uhlmann, F., Facile synthesis of budding yeast A-factor and its use to synchronize cells of alpha mating type, Yeast, 2012, vol. 29, pp. 233–240.

    Article  PubMed  Google Scholar 

  • Pavlov, Y.I., Newlon, C.S., and Kunkel, T.A., Yeast origins establish a strand bias for replicational mutagenesis, Mol. Cell., 2002, vol. 10, pp. 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Peter, M. and Herskowitz, I., Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1, Science, 1994, vol. 265, pp. 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  • Reed, S.I., The selection of S, cerevisiae mutants defective in the start event of cell division, Genetics, 1980, vol. 95, pp. 561–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed, S.I. and Wittenberg, C., Mitotic role for the Cdc28 protein kinase of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, pp. 5697–5701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose, M.D., Winston, F., and Hieter, P., Methods in Yeast Genetics: A Laboratory Course Manual, New York: Cold Spring Harbor Lab. Press, Plainview, 1990.

    Google Scholar 

  • Rothstein, R., Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast, Methods Enzymol., 1991, vol. 194, pp. 281–301.

    Article  CAS  PubMed  Google Scholar 

  • Shcherbakova, P.V. and Kunkel, T.A., Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations, Mol. Cell Biol., 1999, vol. 19, pp. 3177–3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shedden, K., and Cooper, S., Analysis of cell-cycle gene expression in saccharomyces cerevisiae using microarrays and multiple synchronization methods, Nucleic Acids Res., 2002, vol. 30, pp. 2920–2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer, R.A. and Johnston, G.C., Nature of the G1 phase of the yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1981, vol. 78, pp. 3030–3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B., Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Mol. Biol. Cell., 1998, vol. 9, pp. 3273–3297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepchenkova, E.I., Kochenova, O.V., and Inge-Vechtomov, S.G., “Illegitimate” mating and “illegitimate” cytoduction in heterothallic yeast Saccharomyces cerevisiae as a system for analysis of genetic activity of exogenic and endogenic factors in “alfa-test”, Vestn. St. Peterb. Univ., 2009, vol. 3, no. 4, pp. 129–140.

    Google Scholar 

  • Surana, U., Robitsch, H., Price, C., Schuster, T., Fitch, I., Futcher, A.B., and Nasmyth, K., The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae, Cell, 1991, vol. 65, pp. 145–161.

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y., Luo, C., Lu, Y., Tang, C., and Ouyang, Q., Cell cycle synchronization by nutrient modulation, Integr. Biol. (Camb.), 2012, vol. 4, pp. 328–334.

    Article  CAS  Google Scholar 

  • Walker, G.M., Synchronization of yeast cell populations, Methods Cell Sci., 1999, vol. 21, pp. 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, E. and Winey, M., The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint, J. Cell Biol., 1996, vol. 132, pp. 111–123.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, D.H. and Scopes, A.W., Synchronization of division in cultures of Saccharomyces cerevisiae by control of the environment, Symp. Soc. Gen. Microbiol., 1961, vol. 11, pp. 217–242.

    Google Scholar 

  • Yu, L., Qi, M., Sheff, M.A., and Elion, E.A., Counteractive control of polarized morphogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent kinase, Mol. Biol. Cell., 2008, vol. 19, pp. 1739–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zhuk.

Additional information

Original Russian Text © A.S. Zhuk, E.I. Stepchenkova, Y.I. Pavlov, S.G. Inge-Vechtomov, 2016, published in Tsitologiya, 2016, Vol. 58, No. 12, pp. 936–946.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuk, A.S., Stepchenkova, E.I., Pavlov, Y.I. et al. Evaluation of methods of synchronization of cell division in yeast Saccharomyces cerevisiae . Cell Tiss. Biol. 11, 111–122 (2017). https://doi.org/10.1134/S1990519X17020110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17020110

Keywords

Navigation