Skip to main content
Log in

Genetic stability of human endometrial mesenchymal stem cells assessed with morphological and molecular karyotyping

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The aim of this study was to monitor the genetic stability of endometrial mesenchymal stem cells (eMSCs) by G-banding and molecular karyotyping. We evaluated the sensitivity of each method to assess the genetic stability of eMSCs. G-banding karyotyping performed on passages 6 and 15 showed that more than 80% cells had normal karyotype. Random karyotypic changes were found in a small part of the cell population: aneuploidy, isochromosomes, chromosome breakages, interchromosomal association. Molecular karyotyping carried out on the 6th and 14th passages revealed genomic stability, except for in the case of chromosomes 7 and 14. Microduplications 7q36.3 (62 kb) and 14q11.2 (165kb) were found in these chromosomes. We interpreted these aberrations as being derived from the donor of these cells. The morphological and molecular karyotyping complemented each other. Using these methods, we can analyze karyotypic stability at different levels of the genomic organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MSC:

mesenchymal stem cell

eMSC:

endometrial mesenchymal stem cell

References

  • Barkholt, L., Flory, E., Jekerle, V., Lucas-Samuel, S., Ahnert, P., Bisset, L., Büscher, D., Fibbe, W., Foussat, A., Kwa, M., Lantz, O., Maciulaitis, R., Palomäki, T., Schneider, C.K., Sensebé, L., Tachdjian, G., Tarte, K., Tosca, L., and Salmikangas, P., Risk of tumorigenicity in mesenchymal stromal cell-based therapies-bridging scientific observations and regulatory viewpoints, Cytotherapy, 2013, vol. 15, pp. 753–759.

    Article  PubMed  Google Scholar 

  • Ben-David, U., Mayshar, Y., and Benvenisty, N., Largescale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells, Cell Stem Cell, 2011, vol. 9, pp. 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Ben-David, U., Mayshar, Y., and Benvenisty, N., Significant acquisition of chromosomal aberrations in human adult mesenchymal stem cells: response to Sensebé et al., Cell Stem Cell, 2012, vol. 10, pp. 10–1.

    Article  CAS  Google Scholar 

  • Bernardo, M.E., Zaffaroni, N., Novara, F., Cometa, A.M., Avanzini, M.A., Moretta, A., Montagna, D., Maccario, R., Villa, R., Daidone, M.G., Zuffardi, O., and Locatelli, F., Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms, Cancer, 2007, vol. 67, pp. 9142–9149.

    CAS  Google Scholar 

  • Bickmore, W., Karyotype analysis and chromosome banding. MRC human genetics unit, Encyclopedia Life Sci., 2001, pp. 1–7.

    Google Scholar 

  • Bieback, K. and Kluter, H., Mesenchymal stromal cells from umbilical cord blood, Curr. Stem Cell Res. Ther., 2007, vol. 2, pp. 310–323.

    Article  CAS  PubMed  Google Scholar 

  • Borghesi, A., Avanzini, M.A., Novara, F., Mantelli, M., Lenta, E., Achille, V., Cerbo, R.M., Tzialla, C., Longo, S., Silvestri, A., Zimmermann, L.J., Manzoni, P., Zecca, M., Spinillo, A., Maccario, R., Zuffardi, O., and Stronati, M., Genomic alterations in human umbilical cord-derived mesenchymal stromal cells call for stringent quality control before any possible therapeutic approach, Cytotherapy, 2013, vol. 15, pp. 1362–1373.

    Article  CAS  PubMed  Google Scholar 

  • Borgonovo, T., Vaz, I.M., Senegaglia, A.C., Rebelatto, C.L., and Brofman, P.R., Genetic evaluation of mesenchymal stem cells by G-banded karyotyping in a cell technology center, Rev. Bras. Hematol. Hemoter., 2014, vol. 36, pp. 202–207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buyanovskaya, O.A., Kuleshov, N.P., Nikitina, V.A., Voronina, E.S., Katosova, L.D., and Bochkov, N.P., Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing, Bull. Exp. Biol. Med., 2009, vol. 148, pp. 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Cornélio, D.A., Tavares, J.C., Pimentel, T.V., Cavalcanti, G.B., and de Medeiros, S.R., Cytokinesis-block micronucleus assay adapted for analysing genomic instability of human mesenchymal stem cells, Stem Cells Dev., 2014, vol. 23, pp. 823–838.

    Article  PubMed  Google Scholar 

  • De la Fuente, R., Bernad, A., Garcia-Castro, J., Martin, M.C., and Cigudosa, J.C., Spontaneous human adult stem cell transformation (retraction of vol. 65,pg. 3035,2005), Cancer Res., 2010, vol. 70, p. 6682.

    Article  PubMed  Google Scholar 

  • Duarte, D.M., Cornélio, D.A., Corado, C., Medeiros, V.K., de Araújo, L.A., Cavalvanti, G.B.J., and de Medeiros, S.R., Chromosomal characterization of cryopreserved mesenchymal stem cells from the human subendothelium umbilical cord vein, Regen. Med., 2012, vol. 7, pp. 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Froelich, K., Mickler, J., Steusloff, G., Technau, A., Ramos Tirado, M., Scherzed, A., Hackenberg, S., Radeloff, A., Hagen, R., and Kleinsasser, N., Chromosomal aberrations and deoxyribonucleic acid single-strand breaks in adipose-derived stem cells during long-term expansion in vitro, Cytotherapy, 2013, vol. 15, pp. 767–781.

    Article  CAS  PubMed  Google Scholar 

  • Grinchuk, T.M., Ivantsov, K.M., Alekseenko, L.L., Kozhuharova, I.V., Zaichik, A.M., Petrov, I.S., Mikhailov, V.M., and Popov, B.V., Characteristics culture mouse mesenchymal stem cells expressing GFP, Cell Tissue Biol., 2008, vol. 50, no. 12, pp. 1029–1034.

    Google Scholar 

  • Jones, M., Varella-Garcia, M., Skokan, M., Bryce, S., Schowinsky, J., Peters, R., Vang, B., Brecheisen, M., Startz, T., Frank, N., and Nankervis, B., Genetic stability of bone marrow-derived human mesenchymal stromal cells in the quantum system, Cytotherapy, 2013, vol. 15, pp. 1323–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamaeva, S.E., Atlas khromosom postoyannykh kletochnykh linii cheloveka i zhivotnykh (Atlas of Chromosomes of Permanent Cell Lines of Human and Animals), Moscow: Nauch. Mir, 2002.

    Google Scholar 

  • Meza-Zepeda, L.A., Noer, A., Dahl, J.A., Micci, F., Myklebost, O., and Collas, P., High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence, J. Cell. Mol. Med., 2008, vol. 12, pp. 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Mitelman, F., Johansson, B., and Mertens, F., Mitelman database of chromosome aberrations and gene fusions in cancer, 2014. http://cgap.nci.nih.gov/Chromosomes/ Mitelman.

    Google Scholar 

  • Miura, M., Miura, Y., Padilla-Nash, H., Molinolo, A., Fu, D., Patel, V., Seo, B., Sonoyama, W., Zheng, J.J., Baker, C., Chen, W., Ried, T., and Shia, S., Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation, Stem Cells, 2006, vol. 24, pp. 1095–1103.

    Article  PubMed  Google Scholar 

  • Parker, A.M. and Katz, A.J., Adipose-derived stem cells for the regeneration of damaged tissues, Exp. Opin. Biol. Ther., 2006, vol. 6, pp. 567–578.

    Article  CAS  Google Scholar 

  • Phinney, D.G. and Sensebé, L., Mesenchymal stromal cells: misconceptions and evolving concepts, Cytotherapy, 2013, vol. 15, pp. 140–145.

    Article  CAS  PubMed  Google Scholar 

  • Popov, B.V., Petrov, N.S., Mikhailov, V.M., Tomilin, A.N., Alekseenko, L.L., Grinchuk, T.M., and Zaichik, A.M., Spontaneous transformation and immortalization of mesenchymal stem cells in culture in vitro, Cell Tissue Biol., 2009, vol. 51, no. 2, pp. 91–102.

    CAS  Google Scholar 

  • Redaelli, S., Bentivegna, A., Foudah, D., Miloso, M., Redondo, J., Riva, G., Baronchelli, S, Dalprà, L., and Tredici, G., From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells, Stem Cell Res. Ther., 2012, vol. 3, p. 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roemeling-van Rhijn, M., de Klein, A., Douben, H., Pan, Q., van der Laan, L.J., Ijzermans, J.N., Betjes, M.G., Baan, C.C., Weimar, W., and Hoogduijn, M.J., Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells, Cytotherapy, 2013, vol. 15, pp. 1352–1361.

    Article  CAS  PubMed  Google Scholar 

  • Romanov, S.R., Kozakiewicz, K.B., Holst, C.R., Stampfer, M.R., Haupt, L.M., and Tlsty, T.D., Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes, Nature, 2001, vol. 409, pp. 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Roselli, E.A., Lazzati, S., Iseppon, F., Manganini, M., Marcato, L., Gariboldi, M.B., Maggi, F., Grati, F.R., and Simoni, G., Fetal mesenchymal stromal cells from cryopreserved human chorionic villi: cytogenetic and molecular analysis of genome stability in long-term cultures, Cytotherapy, 2013, vol. 15, pp. 1340–1351.

    Article  CAS  PubMed  Google Scholar 

  • Røsland, G.V., Svendsen, A., Torsvik, A., Sobala, E., McCormack, E., Immervoll, H., Mysliwietz, J., Tonn, J.C., Goldbrunner, R., Lønning, E., Bjerkvig, R., and Schichor, C., Long-term cultures of bone marrow–derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation, Cancer Res., 2009, vol. 69, pp. 5331–5339.

    Article  PubMed  Google Scholar 

  • Rubio, D., Garcia-Castro, J., Martin, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C., and Bernad, A., Spontaneous human adult stem cell transformation, Cancer Res., 2005, vol. 65, pp. 3035–3039.

    CAS  PubMed  Google Scholar 

  • Sensebé, L., Beyond genetic stability of mesenchymal stromal cells, Cytotherapy, 2013, vol. 15, pp. 1307–1308.

    Article  PubMed  Google Scholar 

  • Sensebé, L., Tarte, K., Galipeau, J., Krampera, M., Martin, I., Phinney, D.G., and Shi, Y., Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells, Cell Stem Cell, 2012, vol. 10, pp. 9–10.

    Article  PubMed  Google Scholar 

  • Tang, D.Q., Wang, Q., Burkhardt, B.R., Litherland, S.A., Atkinson, M.A., and Yang, L.J., In vitro generation of functional insulin-producing cells from human bone marrowderived stem cells, but long-term culture running risk of malignant transformation, Am. J. Stem Cells, 2012, vol. 1, pp. 114–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarte, K., Gaillard, J., Lataillade, J.J., Fouillard, L., Becker, M., Mossafa, H., Tchirkov, A., Rouard, H., Henry, C., Splingard, M., Dulong, J., Monnier, D., Gourmelon, P., Gorin, N.C., and Sensebé, L., Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation, Blood, 2010, vol. 115, pp. 1549–1553.

    Article  CAS  PubMed  Google Scholar 

  • Todaro, G.J. and Green, H., Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines, J. Cell Biol., 1963, vol. 17, pp. 299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik, A., Rosland, G.V., Svendsen, A., Molven, A., Immervoll, H., McCormack, E., Lonning, P.E., Primon, M., Sobala, E., Tonn, J.C., Goldbrunner, R., Schichor, C., Mysliwietz, J., Lah, T.T., Motaln, H., Knappskoq, S., and Bjerkviq, R., Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track— letter, Cancer Res., 2010, vol. 70, pp. 6393–6396.

    Article  CAS  PubMed  Google Scholar 

  • Ueyama, H., Horibe, T., Hinotsu, S., Tanaka, T., Inoue, T., Urushihara, H., Kitagawa, A., and Kawakami, K., Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions, J. Cell Mol. Med., 2012, vol. 16, pp. 72–82.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov, A.E., Shilina, M.A., Anatskaya, O.V., Alekseenko, L.L., Grinchuk, T.M., and Nikolsky, N.N., Next generation sequencing shows long-term transcriptome activation in human endometrial mesenchymal stem cells after sublethal heat shock, in Materials of 1st International Conference “Cell Technologies at the Edge: Research & Practice. Recent Achievements in Stem Cells Research,” 2016, p. 117.

    Google Scholar 

  • Wang, Y., Huso, D.L., Harrington, J., Kellner, J., Jeong, D.K., Turney, J., and McNiece, I.K., Outgrowth of a transformed cell population derived from normal human bm mesenchymal stem cell culture, Cytotherapy, 2005, vol. 7, pp. 509–519.

    Article  CAS  PubMed  Google Scholar 

  • Zaman, W.S., Makpol, S., Sathapan, S., and Chua, K.H., Long-term in vitro expansion of human adipose-derived stem cells showed low risk of tumourigenicity, J. Tiss. Eng. Regen. Med., 2014, vol. 8, pp. 67–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shilina.

Additional information

Original Russian Text © M.A. Shilina, T.M. Grinchuk, N.N. Nikolsky, 2016, published in Tsitologiya, 2016, Vol. 58, No. 11, pp. 825–831.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilina, M.A., Grinchuk, T.M. & Nikolsky, N.N. Genetic stability of human endometrial mesenchymal stem cells assessed with morphological and molecular karyotyping. Cell Tiss. Biol. 11, 35–41 (2017). https://doi.org/10.1134/S1990519X17010114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17010114

Keywords

Navigation