Skip to main content
Log in

Neuronal differentiation of PC12 cells and mouse neural stem cells on carbon nanotube films

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In development of methods of stimulation of regeneration of nerve tissues and creation of new-generation bioelectronic devices, studying the interaction of nerve cells with specially developed scaffolds with different characteristics of the surface within a nanometer range is a necessary stage. Carbon nanotubes (CNTs), flexible graphene films rolled up into nanosized cylindrical tubes, may represent a promising material for making these scaffolds. CNTs were obtained by chemical vapor deposition. Analysis of PC12 cells cultivated on quartz glasses covered with CNT films using electron and optical microscopy have been performed. It has been demonstrated that CNTs stimulate proliferation and do not inhibit neuronal differentiation of the PC12 cells. The possibility of obtaining neurons differentiated from mouse neural stem cells on quartz glasses covered with the CNT films has been shown. The data obtained indicate the possibility of using CNT films produced by chemical vapor deposition on quartz glasses as an electroconductive substrate for obtaining cells of neural origin and, possibly, mature neurons and studying their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RS:

Raman scattering

SEM:

scanning electron microscopy

CNT:

carbon nanotube

BDNF:

brain-derived neurotrophic factor

bFGF:

basic fibroblast growth factor

EGF:

epidermal growth factor

FBS:

fetal bovine serum

NGF:

nerve growth factor

NSC:

neural stem cells

NT-3:

neurotrophin-3

PBS:

phosphate-buffered saline

References

  • Agarwal, S., Zhou, X., Ye, F., He, Q., Chen, G.C., Soo, J., Boey, F., Zhang, H., and Chen, P., Interfacing live cells with nanocarbon substrates, Langmuir, 2010, vol. 26, pp. 2244–2247.

    Article  CAS  PubMed  Google Scholar 

  • Ageeva, S.A., Bobrinetskii, I.I., Nevolin, V.K., Podgaetskii, V.M., Selishchev, S.V., Simunin, M.M., Konov, V.I., and Savranskii, V.V., Nanotube-based threedimensional albumin composite obtained using continuous laser radiation, Semiconductors, 2009, vol. 43, pp. 1714–1718.

    Article  CAS  Google Scholar 

  • Alarifi, S., Ali, D., Verma, A., Almajhdi, F.N., and AlQahtani, A.A., Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells, In Vitro Cell Dev. Biol. Anim., 2014, vol. 50, pp. 714–722.

    Article  CAS  PubMed  Google Scholar 

  • Beduer, A., Seichepine, F., Flahaut, E., Loubinoux, I., Vaysse, L., and Vieu, C., Elucidation of the role of carbon nanotube patterns on the development of cultured neuronal cells, Langmuir, 2012, vol. 28, pp. 17363–17371.

    Article  CAS  PubMed  Google Scholar 

  • Bobrinetskii, I.I., Morozov, R.A., Seleznev, A.S., Podchernyaeva, R.Ya., and Lopatina, O.A., Proliferative activity and viability of fibroblast and glioblastoma cell on various types of carbon nanotubes, Bull. Exp. Biol. Med., 2012, vol. 153, no. 2, pp. 259–262.

    Article  CAS  PubMed  Google Scholar 

  • Bobrinetskiy, I.I., Seleznev, A.S., Gayduchenko, I.A., Fedorov, G.E., Domantovskiy, A.G., Presnyakov, M.Yu., Podchernyaeva, R.Ya., Mikhaylova, G.R., and Suetina, I.A., The interaction between nerve cells and carbon nanotube networks made by CVD process investigation, Biophysics (Moscow), 2013, vol. 58, no. 3, pp. 409–414.

    Article  CAS  Google Scholar 

  • Chao, T.I., Xiang, S., Chen, C.S., Chin, W.C., Nelson, A.J., Wang, C., and Lu, J., Carbon nanotubes promote neuron differentiation from human embryonic stem cells, Biochem. Biophys. Res. Commun., 2009, vol. 384, pp. 426–430.

    Article  CAS  PubMed  Google Scholar 

  • Dong, J. and Ma, Q., Advances in mechanisms and signaling pathways of carbon nanotube toxicity, Nanotoxicology, 2015, vol. 9, pp. 658–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvir, T., Timko, B.P., Kohane, D.S., and Langer, R., Nanotechnological strategies for engineering complex tissues, Nat. Nanotechnol., 2011, vol. 6, pp. 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Fabbro, A., Cellot, G., Prato, M., and Ballerini, L., Interfacing neurons with carbon nanotubes: (re)engineering neuronal signaling, Prog. Brain Res., 2011, vol. 194, pp. 241–252.

    Article  PubMed  Google Scholar 

  • Fujita, K., Lazarovici, P., and Guroff, G., Regulation of the differentiation of PC12 pheochromocytoma cells, Environ. Health Perspect., 1989, vol. 80, pp. 127–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay, T., Jakobs, E., Ben-Jacob, E., and Hanein, Y., Engineered self-organization of neural networks using carbon nanotube clusters, Physica A, 2005, vol. 350, pp. 611–621.

    Article  CAS  Google Scholar 

  • Greene, L.A. and Tischler, A.S., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. U. S. A., 1976, vol. 73, pp. 2424–2428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan, E. and Kotov, N.A., Successful differentiation of mouse neural stem cells on layer-by-layer assembled singlewalled carbon nanotube composite, Nano Lett., 2007, vol. 7, pp. 1123–1128.

    Article  CAS  PubMed  Google Scholar 

  • Lamura, G., Andreone, A., Yang, Y., Barbara, P., Vigolo, B., Hérold, C., Marêché, J.F., Lagrange, P., Cazayous, M., Sacuto, A., Passacantando, M., Bussolotti, F., and Nardone, M., High-crystalline single- and doublewalled carbon nanotube mats grown by chemical vapor deposition, J. Phys. Chem C., 2007, vol. 111, pp. 15154–15159.

    Article  CAS  Google Scholar 

  • Lewitus, D.Y., Landers, J., Branch, J., Smith, K.L., Callegari, G., Kohn, J., and Neimark, A.V., Biohybrid carbon nanotube/agarose fibers for neural tissue engineering, Adv. Funct. Mater., 2011, vol. 21, pp. 2624–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald, R.A., Laurenzi, B.F., Viswanathan, G., Ajayan, P.M., and Stegemann, J.P., Collagen–carbon nanotube composite materials as scaffolds in tissue engineering, J. Biomed. Mater. Res., 2005, vol. 74A, pp. 489–496.

    Article  CAS  Google Scholar 

  • Matsumoto, K., Sato, C., Naka, Y., Kitazawa, A., Whitby, R.L., and Shimizu, N., Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes, J. Biosci. Bioeng., 2007, vol. 103, pp. 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Meng, L., Jiang, A., Chen, R., Li, C.Z., Wang, L., Qu, Y., Wang, P., Zhao, Y., and Chen, C., Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells, Toxicology, 2013, vol. 313, pp. 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Olakowska, E., Woszczycka-Korczynska, I., JedrzejowskaSzypulka, H., and Lewin-Kowalik, J., Application of nanotubes and nanofibres in nerve repair. A review, Folia Neuropathol., 2010, vol. 48, pp. 231–237.

    CAS  PubMed  Google Scholar 

  • Ramon-Azcon, J., Ahadian, S., Obregon, R., Shiku, H., Ramalingam, M., and Matsue, T., Applications of carbon nanotubes in stem cell research, J. Biomed. Nanotechnol., 2014, vol. 10, pp. 2539–2561.

    Article  CAS  PubMed  Google Scholar 

  • Voge, C.M. and Stegemann, J.P., Carbon nanotubes in neural interfacing applications, J. Neural. Eng., 2011, vol. 8, p. 011001. doi http://dx.doi.org/10.1088/1741-2560/8/1/011001

    Article  PubMed  Google Scholar 

  • Veetil, J.V. and Ye, K., Tailored carbon nanotubes for tissue engineering applications, Biotechnol. Prog., 2009, vol. 25, pp. 709–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Sun, P., Bao, Y., Liu, J., and An, L., Cytotoxicity of single-walled carbon nanotubes on PC12 cells, Toxicol. In Vitro, 2011, vol. 25, pp. 242–250.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Zhang, Y., Yang, Y., Sun, L., Han, D., Li, H., and Wang, C., Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease, Nanomed., 2010, vol. 6, pp. 427–441.

    CAS  Google Scholar 

  • Yuen, F.L., Zak, G., Waldman, S.D., and Docoslis, A., Morphology of fibroblasts grown on substrates formed by dielectrophoretically aligned carbon nanotubes, Cytotechnology, 2008, vol. 56, pp. 9–17.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Posypanova.

Additional information

Original Russian Text © G.A. Posypanova, I.A. Gayduchenko, E.Yu. Moskaleva, G.E. Fedorov, 2016, published in Tsitologiya, 2016, Vol. 58, No. 2, pp. 91–98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posypanova, G.A., Gayduchenko, I.A., Moskaleva, E.Y. et al. Neuronal differentiation of PC12 cells and mouse neural stem cells on carbon nanotube films. Cell Tiss. Biol. 10, 194–201 (2016). https://doi.org/10.1134/S1990519X16030111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X16030111

Keywords

Navigation