Advertisement

Cell and Tissue Biology

, Volume 9, Issue 2, pp 127–132 | Cite as

The influence of local IPT gene induction in roots on content of cytokinins in cells of tobacco leaves

  • L. B. Vysotskaya
  • G. R. Akhiyarova
  • G. V. Sharipova
  • M. A. Dedova
  • S. Yu. Veselov
  • D. Yu. Zaitsev
  • G. R. Kudoyarova
Article

Abstract

Little attention has been paid to detection of cytokinins in differentiated leave cells. We carried out immunochemical staining of cytokinins in transgenic tobacco plants, in which the content of cytokinins increased as a result of induction of the ipt gene expression (which controls the synthesis of cytokinins) in roots. Staining on cytokinins (based on using antibodies against zeatin riboside) was typical for mesophyll cells. The tag was localized in cytoplasm adjacent to the cell wall and was almost absent in vacuoles. Chloroplasts were clearly visible due to tag concentration around them in cytoplasm. Immunohistochemical staining also detected the presence of cytokinins in stomatal cells. Induction of the synthesis of cytokinins increased immunochemical staining of both mesophyll and stomatal cells, which was accompanied by an increase in the stomatal conductance. The possibility of a direct influence on stomatal conductance of cytokinins (accumulating directly in stomatal cells) and mediated influence through photosynthesis in mesophyll cells is discussed.

Keywords

Nicotiana tabacum cytokinins immunolocalization stomatal conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhiyarova, G.R., Fricke, W., Veselov, D.S., Kudoyarova, G.R., and Veselov, S.Yu., ABA accumulation and distribution during the leaf tissues shows its role stomatal conductance regulation under short-term salinity, Tsitologiia, 2006, vol. 48, no. 11, pp. 918–923.Google Scholar
  2. Arkhipova, T.N., Prinsen, E., Veselov, S.U., Martineko, E.V., Melentiev, A.I., and Kudoyarova, G.R., Cytokinin producing bacteria enhances plant growth in drying soil, Plant Soil, 2007, vol. 292, pp. 305–315.CrossRefGoogle Scholar
  3. Baroli, I., Price, D., Badger, M.R., and Von Caemmerer, S., The contribution of photosynthesis to the red light response of stomatal conductance, Plant Physiol., 2008, vol. 146, pp. 737–747.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Brovko, F.A., Vasil’eva, V.S., Shepelyakovskaya, A.O., Selivankina, S.Yu., Kudoyarova, G.R., Nosov, A.V., Moshkov, D.A., Laman, A.G., Boziev, K.M., Kusnetsov, V.V., and Kulaeva, O.N., Cytokinin-binding protein (70 kDa): localization in tissues and cells of etiolated maize seedlings and its putative function, J. Exper. Bot., 2007, vol. 58, pp. 2479–2490.CrossRefGoogle Scholar
  5. Chernyad’ev, I.I., Developmental changes of the photosynthetic apparatus and the action of cytokinins, Appl. Biochem. Microbiol., 2000, vol. 36, pp. 611–625.Google Scholar
  6. Chiappetta, A., Michelotti, V., Fambrini, M., Bruno, L., Salvini, M., Petrarulo, M., Azmi, A., Van Onckelen, H., Pugliesi, C., and Bitonti, M.B., Zeatin accumulation and misexpression of a class I knox gene are intimately linked in the epiphyllous response of the interspecific hybrid EMB-2 (Helianthus annuus × H. tuberosus), Planta, 2006, vol. 223, pp. 917–931.CrossRefPubMedGoogle Scholar
  7. Corbesier, L., Prinsen, E., Jacqmard, A., Lejeune, P., Van Onckelen, H., Perilleux, C., and Bernier, G., Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition, J. Exper. Bot., 2003, vol. 54, pp. 2511–2517.CrossRefGoogle Scholar
  8. Davies, W.J., Kudoyarova, G., and Hartung, W., Long-distance ABA signaling and its relation to other signaling path-ways in the detection of soil drying and the mediation of the plant’s response to drought, J. Plant Growth Reg., 2005, vol. 24, pp. 285–295.CrossRefGoogle Scholar
  9. Gutierrez-Gonzalvez, M.G., Stockert, J.C., Ferrer, J.M., and Tato, A., Ruthenium red staining of polyanion containing structures in sections from epoxy-resin embedded tissues, Acta Histochem., 1984, vol. 74, pp. 115–20.CrossRefPubMedGoogle Scholar
  10. Haberer, G. and Keiber, J.J., Cytokinins. New insights into a classic phytohormone, Plant Physiol., 2002, vol. 128, pp. 354–362.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Kudoyarova, G.R., Vysotskaya, L.B., Cherkozyanova, A., and Dodd, I.C., Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum Lycopersicum L.) xylem sap and leaves, J. Exper. Bot., 2007, vol. 58, pp. 161–168.CrossRefGoogle Scholar
  12. Kudoyarova, G.R., Korobova, A.V., Akhiyarova, G.R., Arkhipova, T.N., Zaytsev, D.Yu., Prinsen, E., Egutkin, N.L., Medvedev, S.S., and Veselov, S.Yu., Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide M-chlorophenylhydrazone (CCCP), J. Exper. Bot., 2014. doi:10.1093/jxb/eru113Google Scholar
  13. Lawson, T., Guard cell photosynthesis and stomatal function, New Phytologist, 2009, vol. 181, pp. 13–34.CrossRefPubMedGoogle Scholar
  14. Merewitz, E., Gianfagna, T., and Huang, B., Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera, J. Exper. Bot., 2011, vol. 62, pp. 383–395.CrossRefGoogle Scholar
  15. Rijavec, T., Jain, M., Dermastia, M., and Chourey, P.S., Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize, Ann. Bot., 2011, vol. 107, pp. 1235–1245.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Roelfsema, M.R.G., Hansterin, S., Felle, H., and Hedrich, R., CO2 provides an intermediate link in the red light response of guard cells, Plant, 2002, vol. J 32, pp. 65–75.CrossRefGoogle Scholar
  17. Schmulling, T., Beinsberger, S., De, Greef, J., Schell, J., Van Onckelen, H., and Spena, A., Construction of a heat-inducible chimerical gene to increase the cytokinin content in transgenic plant tissue, FEBS Lett., 1989, vol. 249, pp. 401–406.CrossRefGoogle Scholar
  18. Skoog, F. and Miller, C.O., Chemical regulation of growth and organ formation in plant tissue cultured in vitro, Symp. Soc. Exper. Biol., 1957, vol. 11, pp. 118–131.Google Scholar
  19. Veselov, S.Yu., Valcke, R., Van Onckelen, H., and Kudoyarova, G.R., Cytokinin content and location in the leaves of the wild-type and transgenic tobacco plants, Russ. J. Plant Physiol., 1999, vol. 46, no. 1, pp. 26–33.Google Scholar
  20. Vysotskaya, L.B., Veselov, S.Y., and Kudoyarova, G.R., Effect on shoot water relations, and cytokinin and abscisic acid levels of inducing expression of a gene coding for isopentenyltransferase in roots of transgenic tobacco plants, J. Exper. Bot., 2010, vol. 61, pp. 3709–3717.CrossRefGoogle Scholar
  21. Vysotskaya, L.B., Akhiyarova, G.R., Veselov, S.Yu., and Kudoyarova, G.R., Cytokinin content and immunolocalization in wheat primary root cells, Tsitologiia, 2011, vol. 53, no. 11, pp. 884–890.Google Scholar
  22. Wulfetange, K., Lomin, S.N., Romanov, G.A., Stolz, A., Heyl, A., and Schmulling, T., The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum, Plant Physiol., 2011, vol. 156, pp. 1808–1818.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Zhang, J., Nguyen, H.T., and Blum, A., Genetic analysis of osmotic adjustment in crop plants, J. Exper. Bot., 1999, vol. 50, pp. 292–302.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. B. Vysotskaya
    • 1
  • G. R. Akhiyarova
    • 1
  • G. V. Sharipova
    • 1
  • M. A. Dedova
    • 1
  • S. Yu. Veselov
    • 2
  • D. Yu. Zaitsev
    • 1
  • G. R. Kudoyarova
    • 1
  1. 1.Institute of Biology, Ufa Science CenterRussian Academy of SciencesUfa, BashkortostanRussia
  2. 2.Bashkir State UniversityUfa, BashkortostanRussia

Personalised recommendations