Skip to main content
Log in

Lysophosphatidic acid and human erythrocyte aggregation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The effect of lysophosphatidic acid (LPA) on the shape and aggregation of human erythrocytes in autologous plasma was studied. The morphology of erythrocytes and their aggregates were studied by light microscopy. It is shown that the addition of plasma with a high LPA content to erythrocytes leads to a change of their shape: discocytes are transformed into echinocytes. There is practically no aggregation of erythrocytes in the form of rouleaux. At the same time, there is observed a strong aggregation of echinocytes. This is accompanied by the formation of microvesicles. The addition of normal blood plasma to echinocytes restores their shape and aggregation of red blood cells in the form of rouleaux. A possible mechanism of action of lysophosphatidic acid on erythrocytes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, J., Inoue, A., and Okudaira, S., Two pathways for lysophosphatidic acid production, Biochim. Biophys. Acta, 2008, vol. 1781, pp. 513–518.

    Article  CAS  PubMed  Google Scholar 

  • Aoki, J., Taira, A., Takanezawa, Y., Kishi, Y., Hama, K., Kishimoto, T., Mizuno, K., Saku, K., Taguchi, R., and Arai, H., Serum lysophosphatidic acid is produced through diverse phospholipase pathways, J. Biol. Chem., 2002, vol. 277, pp. 48737–48744.

    Article  CAS  PubMed  Google Scholar 

  • Baskurt, O.K. and Meiselman, H.J., Cellular determinants of low-shear blood viscosity, Biorheology, 1997, vol. 34, pp. 235–247.

    Article  CAS  PubMed  Google Scholar 

  • Baskurt, O.K. and Meiselman, H.J., Erythrocyte aggregation: basic aspects and clinical importance, Clin. Hemorheol. Microcirculation, 2013, vol. 53, pp. 23–37.

    Google Scholar 

  • Berdichevets, I.N., Tyazhelova, T.V., Shimshilashvili, Kh.R., and Rogaev, E.I., Lysophosphatidic acid is a lipid mediator with wide range of biological activities. Biosynthetic pathways and mechanism of action, Biochemistry (Moscow), 2010, vol. 75, no. 9, pp. 1088–1097.

    Article  CAS  Google Scholar 

  • Bondar’, O.P., Kholodova, Iu.D., Smirnova, I.P., and Vozian, P.A., Surface charge of erythrocyte membrane during disorders of lipid metabolism from the data of micro-electrophoresis. H+-titration and fluorescence studies, Ukr. Biokhim. Zh., 1988, vol. 60, no. 1, pp. 74–81.

    PubMed  Google Scholar 

  • Chung, S.M., Bae, O.N., Lim, R.M., Noh, J.Y., Lee, M.Y., Jung, Y.S., and Chung, J.H., Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes, Arterioscler. Thromb. Vasc. Biol., 2007, vol. 27, pp. 414–421.

    Article  CAS  PubMed  Google Scholar 

  • Eichholtz, T., Jalink, K., Fahrenfort, I., and Moolenaar, W.H., The bioactive phospholipid lysophosphatidic acid is released from activated platelets, Biochem. J., 1993, vol. 291, pp. 677–680.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson, L.E., On the shape of human red blood cells interacting with flat artificial surfaces—the ‘glass effect’, Biochim. Biophys. Acta, 1990, vol. 1036, pp. 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Fourcade, O., Simon, M.F., Viodé, C., Rugani, N., Leballe, F., Ragab, A., Fournié, B., Sarda, L., and Chap, H., Secretory phospholipase A2 generated the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells, Cell, 1995, vol. 80, pp. 919–927.

    Article  CAS  PubMed  Google Scholar 

  • Heard, D.H. and Seaman, G.V.F., The influence of pH and ionic strength on the electrokinetic stability of the human erythrocyte membrane, J. Gen. Physiol., 1960, vol. 43, pp. 635–654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaestner, L., Steffen, P., Nguyen, D.B., Wang, J., Wagner-Britz, L., Jung, A., Wagner, C., and Bernhardt, I., Lysophosphatidic acid induced red blood cell aggregation in vitro, Bioelectrochemistry, 2012, vol. 87, pp. 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Kooijman, E.E., Chupin, V., Fuller, N.L., Koslov, M.M., de, Kruijff, B., Burger, K.N., and Rand, P.R., Spontaneous curvature of phosphatidic acid and lysophosphatidic acid, Biochemistry, 2005, vol. 44, pp. 2097–2102.

    Article  CAS  PubMed  Google Scholar 

  • Marikovsky, Y., Brown, C.S., Weinstein, R.S., and Wortis, H.H., Effects of lysolecithin on the surface properties of human erythrocytes, Exp. Cell Res., 1976, vol. 98, pp. 313–324.

    Article  CAS  PubMed  Google Scholar 

  • Marikovsky, Y., Weinstein, R.S., Skutelsky, E., and Danon, D., Changes of cell shape and surface charge topography in ATP-depleted human red blood cells, Mech. Ageing Dev., 1985, vol. 29, pp. 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Moolenaar, W.H., Lysophosphatidic acid, a multifunctional phospholipid messenger, J. Biol. Chem., 1995, vol. 270, pp. 12949–12952.

    Article  CAS  PubMed  Google Scholar 

  • Moolenaar, W.H., van Meeteren, L.A., and Giepmans, B.N., The ins and outs of lysophosphatidic acid signaling, BioEssays, 2004, vol. 26, pp. 870–881.

    Article  CAS  PubMed  Google Scholar 

  • Neidlinger, N.F., Larkin, S.K., Bhagat, A, Victorino, G.P., and Kuypers, F.A., Hydrolysis of phosphatidylserine-exposing red blood cells by secretory phospholipase A2 generates lysophosphatidic acid and results in vascular dysfunction, J. Biol. Chem., 2006, vol. 281, pp. 775–781.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D.B., Phosphatidylserine exposure in red blood cells: a suggestion for the active role of red blood cells in blood clot formation, Dissertation, Saarbrucken, 2010.

    Google Scholar 

  • Nguyen, D.B., Wagner-Britz, L., Maia, S., Steffen, P., Wagner, C., Kaestner, L., and Bernhardt, I., Regulation of phosphatidylserine exposure in red blood cells, Cell. Physiol. Biochem., 2011, vol. 28, pp. 847–856.

    Article  CAS  PubMed  Google Scholar 

  • Noh, J.Y., Lim, K.M., Bae, O.N., Chung, S.M., Lee, S.W., Joo, K.M., Lee, S.D., and Chung, J.H., Procoagulant and prothrombic activation of human erythrocytes by phosphatidic acid, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 299, pp. H347–H355.

    Article  CAS  PubMed  Google Scholar 

  • Rampling, M.W., Meiselman, H.J., Neu, B., and Baskurt, O.K., Influence of cellular cell-specific factors on red blood cell aggregation, Biorheology, 2004, vol. 41, pp. 91–112.

    CAS  PubMed  Google Scholar 

  • Reinhart, W.H. and Schulzki, T., Metabolic depletion decreases the aggregability of erythrocytes, Clin. Hemorheol. Microcirc., 2011, vol. 49, pp. 451–461.

    CAS  PubMed  Google Scholar 

  • Reinhart, W.H., Baerlocher, G.M., Cerny, T., Owen, G.R., Meiselman, H.J., and Beer, J.H., Ifosfamide-induced stomatocytosis and mesna-induced echinocytosis: influence on biorheological properties of blood, Eur. J. Haematol., 1999, vol. 62, pp. 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Reinhart, W.H., Singh, A., and Straub, P.W., Red blood cell aggregation and sedimentation: the role of the cell shape, Br. J. Haematol., 1989, vol. 73, pp. 551–556.

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Schönbein, H., von Gosen, J., Heinich, L., Klose, H.J., and Volger, E., A counter-rotating “rheoscope chamber” for study of the microrheology of blood cell aggregation by microscopic observation and microphotometry, Microvasc. Res., 1973, vol. 6, pp. 366–376.

    Article  PubMed  Google Scholar 

  • Schumacher, K.A., Classen, H.G., and Späth, M., Platelet aggregation evoked in vitro and in vivo by phosphatidic acids and lysoderivatives: identity with substances in aged serum (DAS), Thromb. Haemost., 1979, vol. 42, pp. 631–640.

    CAS  PubMed  Google Scholar 

  • Schwarz, S., Deuticke, B., and Haest, C.W., Passive trans-membrane redistributions of phospholipids as a determinant of erythrocyte shape change. Studies on electroporated cells, Mol. Membr. Biol., 1999, vol. 16, pp. 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Seaman, G.V.F., Knox, R.J., Nordt, R.J., and Regan, D.H., Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes, Blood., 1977, vol. 50, pp. 1001–1011.

    CAS  PubMed  Google Scholar 

  • Sheremet’ev, Yu.A. and Levin, G.Ya., On the mechanism of red blood cell aggregation, in Materialy dokladov IV S”ezda Biofizikov Rossii (Proc. IV Congress of Biophysicists of Russia), Nizhny Novgorod, 2012, p. 322.

    Google Scholar 

  • Sheremet’ev, Yu.A., Sheremet’eva, A.V., and Lednev, A.V., A study of the aggregation of human erythrocytes induced by picric acid, Biophysics, 2005, vol. 50, no. 5, pp. 784–785.

    Google Scholar 

  • Sheremet’ev, Yu.A., Popovicheva, A.N., Egorihina, M.N., and Levin, G.Ya., Study of the relationship between shape and aggregation change in human erythrocytes, Biophysics, 2013, vol. 58, no. 2, pp. 193–196.

    Article  Google Scholar 

  • Steffen, P., Jung, A., Nguyen, D.B., Muller, T., Bernhardt, I., Kaestner, L., and Wagner, C., Stimulation of human red blood cells leads to Ca2+-mediated intercellular adhesion, Cell Calcium, 2011, vol. 50, pp. 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, C., Steffen, P., and Svetina, S., Aggregation of red blood cells: from rouleaux to clot formation, Comptes Rendus Physique, 2013, vol. 14, pp. 459–469.

    Article  CAS  Google Scholar 

  • Wolfs, J.L., Comfurius, P., Bevers, E.M., and Zwaal, R.F.A., Influence of erythrocyte shape on the rate of Ca2+-induced scrambling of phosphatidylserine, Mol. Membr. Biol., 2003, vol. 20, pp. 83–91.

    CAS  PubMed  Google Scholar 

  • Yang, L., Andrews, D.A., and Low, P.S., Lysophosphatidic acid opens a Ca++ channel in human erythrocytes, Blood, 2000, vol. 95, pp. 2420–2425.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Sheremet’ev.

Additional information

Original Russian Text © Yu.A. Sheremet’ev, A.N. Popovicheva, G.Ya. Levin, 2014, published in Tsitologiya, 2014, Vol. 56, No. 1, pp. 84–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremet’ev, Y.A., Popovicheva, A.N. & Levin, G.Y. Lysophosphatidic acid and human erythrocyte aggregation. Cell Tiss. Biol. 8, 237–243 (2014). https://doi.org/10.1134/S1990519X14030110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14030110

Keywords

Navigation