Skip to main content
Log in

Reorganization of endothelial cells cytoskeleton during formation of functional monolayer in vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Endothelium lining the inner surface of vessels regulates permeability of vascular wall by providing exchange between blood circulation in vessels and tissue fluid and therefore performs a barrier function. Endothelial cells (ECs) in culture are able to maintain the barrier function peculiar to cells of vascular endothelium in vivo. The endothelial monolayer in vitro is a unique model system that allows studying interaction of cytoskeletal and adhesive structures of endotheliocytes from the earliest stages of its formation. In the present work, we described and quantitatively characterized the changes of EC cytoskeleton from the moment of spreading of endotheliocytes on glass and the formation of the first contacts between neighbor cells until formation of a functional confluent monolayer. The main type of intermediate filaments of ECs are vimentin filaments. At different stages of endothelial monolayer formation, disposition of vimentin filaments and their amount do not change essentially, they occupy more than 80% of the cell area. Actin filaments system of endotheliocytes is represented by cortical actin at the cell periphery and by bundles of actin stress fibers organized in parallel. With formation of contacts between cells in native endothelial cells, the number of actin filaments rises and thickness of their bundles increases. With formation of endothelial monolayer, there are also changes in the microtubules system—their number increases at the cell edge. At all stages of EC monolayer formation, the number of microtubules in the region of the already formed intercellular contacts exceeds the number of microtubules in the free lamella region of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmanova, A. and Steinmetz, M.O., Microtubule +TIPs at a glance, J. Cell Sci., 2010, vol. 123, pp. 3415–3419.

    Article  PubMed  CAS  Google Scholar 

  • Alieva, I.B. and Verin, A.D., The functional role of the microtubule/microfilament cytoskeleton in the regulation of pulmonary vascular endothelial barrier, in Endothelial Cytoskeleton, New York: Science Publishers, 2013, pp. 116–145.

    Google Scholar 

  • Alieva, I.B., Zemskov, E.A., Smurova, K.M., Kaverina, I.N., and Verin, A.D., The leading role of micro-tubules in endothelial barrier dysfunction: disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization, J. Cell Biochem., 2013, vol. 114, pp. 2258–2272.

    Article  PubMed  CAS  Google Scholar 

  • Applewhite, D.A., Grode, K.D., Keller, D., Zadeh, A.D., Slep, K.C., and Rogers, S.L., The spectraplakin short stop is an actin-microtubule cross-linker that contributes to organization of the microtubule network, Mol. Biol. Cell., 2010, vol. 21, pp. 1714–1724.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bershadsky, A.D., Ballestrem, C., Carramusa, L., Zilberman, Y., Gilquin, B., Khochbin, S., Alexandrova, A.Y., Verkhovsky, A.B., Shemesh, T., and Kozlov, M.M., Assembly and mechanosensory function of focal adhesions: experiments and models, Eur. J. Cell Biol., 2006, vol. 85, pp. 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Birukova, A., Birukov, K., Smurova, K., Kaibuchi, K., Alieva, I., Garcia, J.G., and Verin, A., Novel role of microtubules in thrombin-induced endothelial barrier dysfunction, FASEB J., 2004a, vol. 18, pp. 1879–1890.

    Article  PubMed  CAS  Google Scholar 

  • Birukova, A.A, Smurova, K.M., Birukov, K.G., Kaibuchi, K., Garcia, J.G., and Verin, A.D., Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier disfunction, Microvasc. Res., 2004b, vol. 67, pp. 64–77.

    Article  PubMed  CAS  Google Scholar 

  • Bogatcheva, N.V., Garcia, J.G., and Verin, A.D., Molecular mechanisms of thrombin-induced endothelial cell permeability, Biochemistry (Moscow), 2002, vol. 67, pp. 75–84.

    PubMed  CAS  Google Scholar 

  • Bruneel, A., Labas, V., Mailloux, A., Sharma, S., Vinh, J., Vaubourdolle, M., and Baudin, B., Proteomic study of human umbilical vein endothelial cells in culture, Proteomics, 2003, vol. 3, pp. 714–723.

    Article  PubMed  CAS  Google Scholar 

  • Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C., Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton, Ann. Rev. Cell Biol., 1988, vol. 4, pp. 487–525.

    Article  PubMed  CAS  Google Scholar 

  • Cary, R.B., Klymkowsky, M.W., Evans, R.M., Domingo, A., Dent, J.A., and Backhus, L.E., Vimentin’s tail interacts with actin-containing structures in vivo, J. Cell Sci., 1994, vol. 107, pp. 1609–1622.

    PubMed  CAS  Google Scholar 

  • Cattan, C.E. and Oberg, K.C., Vinorelbine tartrate-induced pulmonary edema confirmed on rechallenge, Pharmacotherapy, 1999, vol. 19, pp. 992–994.

    Article  PubMed  CAS  Google Scholar 

  • Cook, T.A., Nagasaki, T., and Gundersen, G.G., Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid, J. Cell Biol., 1998, vol. 141, pp. 175–185.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A., and Hall, A., Rac/Cdc42 and P65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16, J. Biol. Chem., 2001, vol. 276, pp. 1677–1680.

    Article  PubMed  CAS  Google Scholar 

  • Dráberová, E. and Dráber, P., A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules, J. Cell Sci., 1993, vol. 106, pp. 1263–1273.

    PubMed  Google Scholar 

  • Dudek, S.M. and Garcia, J.G., Cyloskeletal regulation of pulmonary vascular permeability, J. Appl. Physiol., 2001, vol. 91, pp. 1487–1500.

    PubMed  CAS  Google Scholar 

  • Efimov, A., Kharitonov, A., Efimova, N., Loncarek, J., Miller, P.M., Andreyeva, N., Gleeson, P., Galjart, N., Maia, A.R.R., McLeod, I.X., Yates, J.R., III, Maiato, H., Khodjakov, A., Akhmanova, A., and Kaverina, I., Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network, Dev. Cell., 2007, vol. 12, pp. 917–930.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Esue, O., Carson, A.A., Tseng, Y., and Wirtz, D., A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin, J. Biol. Chem., 2006, vol. 281, pp. 30393–30399.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E. and Karakesisoglou, I., Bridging cytoskeletal intersections, Genes Dev., 2001, vol. 15, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi, K., Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170, Cell, 2002, vol. 109, pp. 873–885.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J.G., Davis, H.W., and Patterson, C.E., Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation, J. Cell. Physiol., 1995, vol. 163, pp. 510–522.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K.M., Transmembrane extracellular matrix-cytoskeleton crosstalk, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, pp. 793–805.

    Article  PubMed  CAS  Google Scholar 

  • Groeneveld, A.B., Vascular pharmacology of acute lung injury and acute respiratory distress syndrome, Vasc. Pharm., 2002, vol. 39, pp. 247–256.

    Article  CAS  Google Scholar 

  • Gundersen, G.G., Gomes, E.R., and Wen, Y., Cortical control of microtubule stability and polarization, Cur. Opin. Cell Biol., 2004, vol. 16, pp. 106–112.

    Article  CAS  Google Scholar 

  • Helmke, B.P., Thakker, D.B., Goldman, R.D., and Davies, P.F., Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells, Biophys. J., 2001, vol. 80, pp. 184–194.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoelzle, M.K. and Svitkina, T., The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells, Mol. Biol. Cell., 2012, vol. 23, pp. 310–323.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ishizaki, T., Morishima, Y., Okamoto, M., Furuyashiki, T., Kato, T., and Narumiya, S., Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1, Nat. Cell Biol., 2001, vol. 3, pp. 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, A.B. and Hall, A., Rho GTPases: biochemistry and biology, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 247–269.

    Article  PubMed  CAS  Google Scholar 

  • Jalimarada, S.S., Shivanna, M., Kini, V., Mehta, D., and Srinivas, S.P., Microtubule disassembly breaks down the barrier integrity of corneal endothelium, Exp. Eye Res., 2009, vol. 89, pp. 333–343.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jordan, M.A. and Wilson, L., Microtubules as a target for anticancer drugs, Nat. Rev. Cancer., 2004, vol. 4, pp. 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Kaverina, I., Krylyshkina, O., and Small, J.V., Microtubule targeting of substrate contacts promotes their relaxation, J. Cell. Biol., 1999, vol. 146, pp. 1033–1043.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Komarova, Y.A., Mehta, D., and Malik, A.B., Dual regulation of endothelial junctional permeability, Sci STKE, 2007, vol. 2007,is. 412, p. re8.

    PubMed  Google Scholar 

  • Lansbergen, G. and Akhmanova, A., Microtubule plus end: a hub of cellular activities, Traffic (Copenhagen, Denmark), 2006, vol. 7, pp. 499–507.

    Article  PubMed  CAS  Google Scholar 

  • Liao, G. and Gundersen, G.G., Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin, J. Biol. Chem., 1998, vol. 273, pp. 9797–9803.

    Article  PubMed  CAS  Google Scholar 

  • Liu, T., Guevara, O.E., Warburton, R.R., Hill, N.S., Gaestel, M., and Kayyali, U.S., Regulation of vimentin intermediate filaments in endothelial cells by hypoxia, Am. J. Physiol. Cell. Physiol., 2010, vol. 299, pp. C363–C373.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lum, H. and Malik, A.B, Mechanisms of increased endothelial permeability, Can. J. Physiol. Pharmacol., 1996, vol. 74, pp. 787–800.

    PubMed  CAS  Google Scholar 

  • Mehta, D. and Malik, A.B., Signaling mechanisms regulating endothelial permeability, Physiol. Rev., 2006, vol. 86, pp. 279–367.

    Article  PubMed  CAS  Google Scholar 

  • Meng, W., Mushika, Y., Ichii, T., and Takeichi, M., Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts, Cell, 2008, vol. 135, pp. 948–959.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J.T., Pfeiffer, E.R., Thirkill, T.L., Kumar, P., Peng, G., Fridolfsson, H.N., Douglas, G.C., Starr, D.A., and Barakat, A.I., Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization, Mol. Biol. Cell., 2011, vol. 22, pp. 4324–4334.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Palazzo, A.F., Cook, T.A., Alberts, A.S., and Gundersen, G.G., mDia mediates Rho-regulated formation and orientation of stable microtubules, Nat. Cell Biol., 2001, vol. 3, pp. 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Pasquier, E., Honore, S., Pourroy, B., Jordan, M.A., Lehmann, M., Briand, C., and Braguer, D., Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells, Cancer Res., 2005, vol. 65, pp. 2433–2440.

    Article  PubMed  CAS  Google Scholar 

  • Prasain, N. and Stevens, T., The actin cytoskeleton in endothelial cell phenotypes, Microvasc. Res., 2009, vol. 77, pp. 53–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., and Waterman-Storer, C.M., Conserved microtubule-actin interactions in cell movement and morphogenesis, Nat. Cell Biol., 2003, vol. 5, pp. 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, E.L., Antivascular actions of microtubule-binding drugs, Clin. Cancer Res., 2009, vol. 15, pp. 2594–2601.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shewan, A.M., Maddugoda, M., Kraemer, A., Stehbens, S.J., Verma, S., Kovacs, E.M., and Yap, A.S., Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts, Mol. Biol. Cell., 2005, vol. 16, pp. 4531–4542.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shivanna, M. and Srinivas, S.P., Microtubule stabilization opposes the (TNF-α)-induced loss in the barrier integrity of corneal endothelium, Exp. Eye Res., 2009, vol. 89, pp. 950–959.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Small, J.V. and Kaverina, I., Microtubules meet substrate adhesions to arrange cell polarity, Curr. Opin. Cell Biol., 2003, vol. 15, pp. 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Smurova, K.M., Birukova, A.A., Verin, A.D., and Alieva, I.B., Dose-dependent effect of nocodazole on endothelial cell cytoskeleton, Biochemistry (Moscow), Supplement Series A: Membr. Cell Biol., 2008, vol. 2, pp. 119–127.

    Google Scholar 

  • Smurova, K.M., Birukova, A.A., Verin, A.D., and Alieva, I.B., Microtubule system in endothelial barrier dysfunction: disassembly of peripheral microtubules and microtubule reorganization in internal cytoplasm, Cell Tiss. Biol., 2008, vol. 2, pp. 45–52.

    Article  Google Scholar 

  • Smurova, K.M., Verin, A.D., and Alieva, I.B., Inhibition of RHO-kinase depends on factors that modify endothelial permeability, Cell Tiss. Biol., 2011, vol. 5, pp. 221–227.

    Article  Google Scholar 

  • Stehbens, S.J., Paterson, A.D., Crampton, M.S., Shewan, A.M., Ferguson, C., Akhmanova, A., Parton, R.G., and Yap, A.S., Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts, J. Cell Sci., 2006, vol. 1199, pp. 1801–1811.

    Article  CAS  Google Scholar 

  • Tsuruta, D. and Jones, J.C., The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress, J. Cell Sci., 2003, vol. 116, pp. 4977–4984.

    Article  PubMed  CAS  Google Scholar 

  • Uoshima, N., Yoshioka, K., Tegoshi, H., Wada, S., Fujiwara, Y., Satake, N., Kasamatsu, Y., and Yokoho, S., Acute respiratory failure caused by vinorelbine tartrate in a patient with non-small cell lung cancer, Int. Med., 2001, vol. 40, pp. 779–782.

    Article  CAS  Google Scholar 

  • van Nieuw Amerongen, G.P., Vermeer, M.A., and van Hinsbergh, V.W., Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction, Arterioscler. Thromb. Vasc. Biol., 2000, vol. 20, pp. e127–e133.

    Article  PubMed  Google Scholar 

  • Watanabe, T., Wang, S., Noritake, J., Sato, K., Fukata, M., Takefuji, M., Nakagawa, M., Izumi, N., Akiyama, T., and Kaibuchi, K., Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration, Dev. Cell., 2004, vol. 7, pp. 871–883.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Alieva.

Additional information

Original Russian Text © A.S. Shakhov, A.D. Verin, I.B. Alieva, 2014, published in Tsitologiya, 2014, Vol. 56, No. 1, pp. 5–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhov, A.S., Verin, A.D. & Alieva, I.B. Reorganization of endothelial cells cytoskeleton during formation of functional monolayer in vitro. Cell Tiss. Biol. 8, 138–151 (2014). https://doi.org/10.1134/S1990519X14020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14020096

Keywords

Navigation