Skip to main content
Log in

Evolutionary regularities of development of somatic polyploidy in salivary glands of gastropod mollusks: V. Subclasses Opisthobranchia and Pulmonata

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Salivary glands of 25 species of Opisthobranchia and Pulmonata gastropod mollusks were studied with the use of histochemical methods and cytophotometry of DNA in cellular nuclei. In the secretory epithelium, cells of three main types are identified: granular cells (with granular glycoprotein inclusions), mucocytes-I (containing sulphatized acid mucopolysaccharides), and mucocytes-II (containing neutral and acid nonsulphatized polysaccharides and protein), as well as epithelial ciliated cells and cells of ducts. It is shown that the salivary gland secretory cells of all studied mollusk species are polyploidized, but to different degree. In most species, the maximal degree of polyploidy estimated by the DNA content amounts to 64–128c. Giant polyploidy—up to 4096c—is revealed in salivary gland cells of Tritonia diomedea. The functional properties due to the peculiarities of nutrition of different molluscan species and phylogenetic tendencies of development of somatic polyploidy in the class of Gastropoda are discussed. The high degree of obligatory polyploidization revealed in salivary gland cells of the opisthobranchian and pulmonate mollusks is considered as a peculiar cytological arogenesis as compared with allogenic, facultative, and slight manifestations of polyploidy in prosobranchian gastropod mollusks. The probable causes of such differences are due to the euthyneural type of organization of the central nervous system and to the giant neuronal polyploidy in opisthobranchian and pulmonate mollusks. The causes, mechanisms, and significance of such correlations are so far unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anatskaya, O.V. and Vinogradov, A.E., Paraoxical Relationship between Protein Content and Nucleolar Activity in Mammalian Cardiomyocytes, Genome, 2004, vol. 47, pp. 565–578.

    Article  PubMed  CAS  Google Scholar 

  • Anatskaya, O.V., Vinogradov, A.E., and Kudryavtsev, B.N., Hepatocyte Polyploidy and Metabolism/Life-History Traits: Hypotheses Testing, J. Theor. Biol., 1994, vol. 168, pp. 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Anisimov, A.P., A Simple Method of Preparing Permanent Squash Preparations Using Cellophane, Tsitologiia, 1992, vol. 34, nos. 11/12, pp. 110–112.

    PubMed  CAS  Google Scholar 

  • Anisimov, A.P., Cell Proliferation and Somatic Polyploidy in Tissues of Gastropods: A Review. V. The Nervous System, Tsitologiia, 1999a, vol. 41, no. 1, pp. 14–22.

    Google Scholar 

  • Anisimov, A.P., Cell Proliferation and Somatic Polyploidy in Tissues of Gastropods: A Review. VII. Somatic Polyploidy as a Morphogenetic Factor, Tsitologiia, 1999b, vol. 41, no. 1, pp. 32–39.

    Google Scholar 

  • Anisimov, A.P., Endopolyploidy as a Morphogenetic Factor of Development, Cell Biol. Int., 2005, vol. 29, pp. 993–1004.

    Article  PubMed  Google Scholar 

  • Anisimov, A.P., Tokmakova, N.P., and Poveshchenko, O.S., Somatic Polyploidy in Different Tissues of the Snail Succinea putris, Tsitologiia, 1995, vol. 37, no. 4, pp. 311–330.

    Google Scholar 

  • Barow, M. and Meister, A., Endopolyploidy in Seed Plants Is Differently Correlated to Systematics, Organ, Life Strategy and Genome Size, Plant Cell Environ., 2003, vol. 26, pp. 571–584.

    Article  Google Scholar 

  • Beltz, B.A. and Gelperin, B.A., An Ultrastructural Analysis of the Salivary System of the Terrestrial Mollusc, Limax maximus, Tiss. Cell, 1979, vol. 11, pp. 31–50.

    Article  CAS  Google Scholar 

  • Boer, H.H., Groot, C., Dc, Jong-Brink, M., and Cornelise, C.J., Polyploidy in the Freshwater Snail Lymnaea stagnalis (Gastropoda, Pulmonata). A Cytophotometric Analysis of the DNA in Neurons and Some Other Cell Types, Neth. J. Zool., 1977, vol. 27, pp. 245–252.

    Article  Google Scholar 

  • Boer, H.H., Wendelaar, Bonga, S.E., and van Rooyen, N., Light and Electron Microscopical Investigations on the Salivary Glands of Lymnaea stagnalis L., Z. Zellforsch. Microsc. Anat., 1967, vol. 76, pp. 228–247.

    Article  Google Scholar 

  • Bogatov, V.V. and Zatravkin, M.N., Gastropoda of Fresh and Brackish Waters of the Soviet Far East, in Mollyuski. Rezul’taty i perspektivy ikh issledovanii (Mollusks. Results and Prospects of Their Study), Leningrad: Nauka, 1987, vol. 8 pp. 196–200.

    Google Scholar 

  • Brodskii, V.Ya. and Uryvaeva, I.V., Kletochnaya poliploidiya. Proliferatsiya i differentsirovka (Cell Polyploidy. Proliferation and Differentiation), Moscow: Nauka, 1981.

    Google Scholar 

  • Brodsky, V.Ya., Cell Polyploidy in the Mammalian Heart, in The Development and Regenerative Potential of Cardiac Muscle, New York: Harwood Acad. Publ., 1991, pp. 255–293.

    Google Scholar 

  • Bullock, T.H. and Horridge, G.A., Structure and Function in the Nervous System of Invertebrates, San Francisco: Freeman, 1965, Vol. 2.

    Google Scholar 

  • Edgar, B.A. and Orr-Weaver, T.L., Endoreplication Cell Cycles: More for Less, Cell, 2001, vol. 105, pp. 297–306.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, M.A., Velde, G., and Roubos, E.W., Morphology, Anatomy and Histology of Doto uva Marcus, 1955 (Opisthobranchia: Nudibranchia) from the Chilean Coast, Contribut. Zool., 2006, vol. 75, pp. 145–159.

    Google Scholar 

  • Ghose, K.C., The Alimentary System of Achatina fulica, Trans. Amer. Microsc. Soc., 1963, vol. 82, pp. 149–167.

    Article  Google Scholar 

  • Golikov, A.N., and Starobogatov, Ya.I., Problems of Phylogeny and System of the Prosobranch Gastropods, Tr. Zool. Inst. AN SSSR, Leningrad: Nauka, 1988, vol. 187, pp. 4–77.

    Google Scholar 

  • Haszprunar, G., On the Origin and Evolution of Major Gastropod Groups, with Special Reference to the Streptoneura, J. Mol. Stud., 1988, vol. 54, pp. 367–441.

    Article  Google Scholar 

  • Kirsanova, I.A., Somatic Polyploidy in the Central Nervous System of Pulmonary Gastropods, Extended Abstract of Candidate’s (Biol.) Dissertation, Vladivostok, 2003.

  • Kudryavtsev, B.N., Anatskaya, O.V., Nilova, V.K., and Komarov, S.A., The Relationships between Mitochondrial and Myofibrillar Apparatus of Cardiomyocytes with Their Level of Ploidy and Hypertrophy in Some Species of Mammals, which Differ in Body Weight, Tsitologiia, 1997, vol. 39, no. 10, pp. 946–964.

    Google Scholar 

  • Kudryavtsev, B.N., Cell Mechanisms of Normal and Reparative Growth of Mammalian Liver, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 1991.

  • Kupper, T. and Pfitzer, P., DNA in Cardiac Myocytes of Normal and Miniature Pigs, in The Development and Regenerative Potential of Cardiac Muscle, New York: Harwood Acad. Publ., 1991, pp. 197–225.

    Google Scholar 

  • Leal-Zanchet, A.M., Histology of the Salivary Glands of the Limacoidea and Milacidae (Gastropoda, Pulmonata), Rev. Bras. Zool., 2003, vol. 20, pp. 401–407.

    Article  Google Scholar 

  • Likharev, I.M., and Victor, A.J., Slugs of the Fauna of the USSR and Adjacent Countries (Gastropoda Terrestria nuda), in Fauna SSSR. Mollyuski (The Fauna of the USSR: Mollusks), Leningrad: Nauka, 1980, Vol. III, no. 5.

    Google Scholar 

  • Lillie, R., Patogistologicheskaya tekhnika i prakticheskaya gistokhimiya (Histopathologic Technic and Practical Histochemistry), Moscow: Mir, 1969.

    Google Scholar 

  • Lobo-da-Cunha, A., Ferreira, I., Coelho, R., and Calado, G., Light and Electron Microscopy Study of the Salivary Glands of the Carnivorous Opisthobranch Philinopsis depicta (Mollusca, Gastropoda), Tiss. Cell, 2009, vol. 41, pp. 367–375.

    Article  Google Scholar 

  • Lobo-da-Cunha, A., Ultrastructural and Histochemical Study of the Salivary Glands of Aplysia depilans (Mollusca, Opisthobranchia), Acta Zool., 2000, vol. 82, pp. 201–212.

    Article  Google Scholar 

  • Martynov, A.V., Nudibranchs (Mollusca: Nudibranchia) of the Northwestern Part of the Sea of Japan (with Remarks on the Order Nudibranchia), Extended Abstract of Candidate’s (Biol.) Dissertation, St. Petersburg, 1999.

  • Minichev, Yu.S. and Starobogatov, Ya.I., Subclasses of Gastropods and Their Phylogenetic Relationships, Zool. Zh., 1979, vol. 58, no. 3, pp. 293–305.

    Google Scholar 

  • Moura, K.R.S., Terra, W.R., and Ribeiro, A.F., The Functional Organization of the Salivary Gland of Biomphalaria straminea (Gastropoda: Planorbidae): Secretory Mechanisms and Enzymatic Determinations, J. Mollusc. Stud., 2004, vol. 70, pp. 21–29.

    Article  Google Scholar 

  • Nagl, W., Endopolyploidy and Polyteny in Differentiation and Evolution, Amsterdam: North Holland, 1978.

    Google Scholar 

  • Pearse, S., Gistokhimiya teoreticheskaya i prikladnaya (Histochemistry: Theoretical and Applied), Moscow: Izd. Inostr. Liter., 1962.

    Google Scholar 

  • Pirger, Zc., Elekes, K., and Kiss, T., Functional Morphology of the Salivary Gland of the Snail, Helix pomatia: A Histochemical and Immunocytochemical Study, Acta Biol. Hung., 2004, vol. 55, pp. 221–232.

    Article  PubMed  Google Scholar 

  • Quattrini, D., Osservazioni su un Passaggio di Ribonucleoproteine dal Citoplasma al Nucleo e su un Gruppo di Neuroni Secerneti nel Sistema Nervose Centrale die Molluschi Gasteropodi, Caryologia, 1960, vol. 13, pp. 444–468.

    Google Scholar 

  • Sakharov, D.A., Functional Organization of Giant Neurons of Mollusks, Usp. Sovrem. Biol., 1965, vol. 60, no. 3, pp. 365–383.

    Google Scholar 

  • Schreiber, M. and Schreiber, G., Researches on Quantitative Cytology, the Somatic Ploidy in Gland Tissues of Gastropods, Revista Biologia, 1964, vol. 57, pp. 285–300.

    Google Scholar 

  • Sheffel, P. and Shaiba, B., Rasteniya i zhivotnye. Rukovodstvo dlya naturalista (Plants and Animals: Naturalist’s Guide), Moscow: Mir, 1991.

    Google Scholar 

  • Shileiko, A.A., Nazemnye mollyuski nadsemeystva Helicoidea. Fauna SSSR. Mollyuski (Terrestrial Mollusks of the Superfamily Helicoidea. Fauna of the USSR. Mollusks), Vol. 3, no. 6, Leningrad: Nauka, 1978.

    Google Scholar 

  • Swift, H., Quantitative Aspects of Nuclear Nucleoproteins, Int. Rev. Cytol., 1953, vol. 2, pp. 1–76.

    Article  CAS  Google Scholar 

  • Tabakova, E.V., Kirsanova, I.A., and Anisimov, A.P., Morphological Variability and Ploidy of the Nuclei of Neurons of the Central Nervous System of Bivalve Mollusks in Relation to Somatic Polyploidy, Biologiya Morya (Russ. J. Mar. Biol.), 2005, vol. 31, no. 5, pp. 352–357.

    Google Scholar 

  • Tsikhon-Lukanina, E.A., Trofologiya vodnykh mollyuskov (Trophic Ecology of Aquatic Mollusks), Moscow: Nauka, 1987.

    Google Scholar 

  • Veprintsev, B.N., Krasts, I.V., and Sakharov, D.A., Nerve Cells of the Nudibranch Mollusk Tritonia diomedea Bergh, Biofizika, 1964, vol. 9, no. 3, pp. 327–336.

    PubMed  CAS  Google Scholar 

  • Vinogradov, A.E., Anatskaya, O.V., Kudryavtsev, B.N., Relationship of Hepatocyte Ploidy Levels with Body Size and Growth Rate in Mammals, Genome, 2001, vol. 44, pp. 350–360.

    Article  PubMed  CAS  Google Scholar 

  • Walker, G., Light and Electron Microscope Investigations on the Salivary Glands of the Slug, Agriolimax reticulates (Müller), Protoplasma, 1970, vol. 71, pp. 111–126.

    Article  Google Scholar 

  • Zhadin, V.I., Mollyuski presnykh i solonovatykh vod SSSR (Mollusks of Fresh and Brackish Waters of the USSR), Moscow: Nauka, 1952.

    Google Scholar 

  • Zyumchenko, N.E. and Anisimov, A.P., Evolutionary Regularities of Somatic Polyploidy Manifestation in Salivary Glands of Gastropod Molluscs. I. Subclasses Cyclobranchia and Scutibranchia, Tsitologiia, 2000, vol. 42, no. 7, pp. 710–718.

    Google Scholar 

  • Zyumchenko, N.E. and Anisimov, A.P., Evolutionary Regularities of Somatic Polyploidy Manifestation in Salivary Glands of the Gastropod Molluscs. II. Subclass Pectinibranchia: Order Anisobranchia, Tsitologiia, 2001a, vol. 43, no. 5, pp. 446–452.

    Google Scholar 

  • Zyumchenko, N.E. and Anisimov, A.P., Evolutionary Regularities of Somatic Polyploidy Manifestation in Salivary Glands of the Gastropod Molluscs. III. Subclass Pectinibranchia: Orders Discopoda, Echinospirida, Aspidophora, and Entomostoma (Mesogastropoda), Tsitologiia, 2001b, vol. 43, no. 6, pp. 19–26.

    Google Scholar 

  • Zyumchenko, N.E. and Anisimov, A.P., Evolutionary Regularities of the Somatic Polyploidy Manifestation in Salivary Glands of Gastropod Molluscs. IV. A Subclass of Pectinibranchia: Orders Hamiglossa and Toxoglossa (Neogastropoda), Tsitologiia, 2002, vol. 44, no. 5, pp. 431–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Anisimov.

Additional information

Original Russian Text © A.P. Anisimov, N.E. Zyumchenko, 2012, published in Tsitologiya, 2012, Vol. 54, No. 2, pp. 165–175.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anisimov, A.P., Zyumchenko, N.E. Evolutionary regularities of development of somatic polyploidy in salivary glands of gastropod mollusks: V. Subclasses Opisthobranchia and Pulmonata. Cell Tiss. Biol. 6, 268–279 (2012). https://doi.org/10.1134/S1990519X12030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X12030029

Keywords

Navigation