Advertisement

Cell and Tissue Biology

, Volume 6, Issue 2, pp 115–121 | Cite as

Generation of rat-induced pluripotent stem cells: Reprogramming and culture medium

  • M. A. LiskovykhEmail author
  • I. A. Chuykin
  • A. Ranjan
  • D. A. Safina
  • E. N. Tolkunova
  • Yu. M. Minina
  • N. S. Zhdanova
  • P. A. Dyban
  • John J. Mullins
  • E. I. Kostyleva
  • E. V. Chikhirzhina
  • M. Bader
  • N. Alenina
  • A. N. Tomilin
Article

Abstract

The rat represents an animal model highly attractive for studying pharmacology, physiology, aging, cardiovascular diseases, etc., that in many aspects is more adequate than the mouse model. Derivation of induced pluripotent stem cells from rats (riPS) opens the opportunity for gene targeting in specific rat strains, as well as for the development of new protocols for the treatment of different degenerative diseases. Here we report an improved protocol for riPS cell generation, which is based on lentivirus delivery of reprogramming factors with their subsequent excision from the genome, application of serum-free media and chemical inhibitors MEK and GSK. We compared various conditions for riPS cell derivation, analyzed the cell karyotype, and assessed the pluripotency of the established cells. These data may prompt further iPS cell-based gene targeting in rat, as well as the development of iPS-based cell therapy, using this animal model.

Keywords

induced pluripotent stem cells rat reprogramming 

Abbreviations

iPS cells

induced pluripotent stem cells

MEF

mouse embryonic fibroblasts

ES cells

embryonic stem cells

EGFP

enhanced green fluorescent protein

GSK

glycogen synthase kinase

LIF

leukemia inhibitory factor

PBS

phosphate buffer saline

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S., Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells, Science, 2008, vol. 321, pp. 699–702.PubMedCrossRefGoogle Scholar
  2. Brambrink, T., Foreman, R., Welstead, G.G., Lengner, C.J., Wernig, M., Suh, H., and Jaenisch, R., Sequential Expression of Pluripotency Markers during Direct Reprogramming of Mouse Somatic Cells, Cell Stem Cell, 2008, vol. 2, pp. 151–159.PubMedCrossRefGoogle Scholar
  3. Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J., Ying, Q.L., and Smith, A., Capture of Authentic Embryonic Stem Cells from Rat Blastocysts, Cell, 2008, vol. 135, pp. 1287–1298.PubMedCrossRefGoogle Scholar
  4. Evans, M.J. and Kaufman, M.H., Establishment in Culture of Pluripotential Cells from Mouse Embryos, Nature, 1981, vol. 292, pp. 154–156.PubMedCrossRefGoogle Scholar
  5. Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., et al., Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency, Cell, 2008, vol. 133, pp. 250–264.PubMedCrossRefGoogle Scholar
  6. Holubcová, Z., Matula, P., Sedláčková, M., Vinarský, V., Doležalová, D., Bárta, T., Dvořák, P., and Hampl, A., Human Embryonic Stem Cells Suffer from Centrosomal Amplification, Stem Cells, 2010, vol. 29, pp. 46–56.CrossRefGoogle Scholar
  7. Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., and Ding, S., Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors, Cell Stem Cell, 2009, vol. 4, pp. 16–19.PubMedCrossRefGoogle Scholar
  8. Liao, J., Cui, C., Chen, S., Ren, J., Chen, J., Gao, Y., Li, H., Jia, N., Cheng, L., Xiao, H., and Xiao, L., Generation of Induced Pluripotent Stem Cell Lines from Adult Rat Cells, Cell. Stem Cell, 2009, vol. 4, pp. 11–5.PubMedCrossRefGoogle Scholar
  9. Minina, Iu.M., Zhdanova, N.S., Shilov, A.G., Tolkunova, E.N., Liskovykh, M.A., and Tomilin, A.N., Chromosomal Instability of in vitro Cultured Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells, Tsitologiya, 2010, vol. 52, pp. 420–425.Google Scholar
  10. O’Brien, S.J., Menninger, J.C., and Nash, W.G., Atlas of Mammalian Chromosomes, Hoboken, NJ: Wiley-Liss. 2006, vol. XLII.CrossRefGoogle Scholar
  11. Okita, K., Ichisaka, T., and Yamanaka, S., Generation of Germline-Competent Induced Pluripotent Stem Cells, Nature, 2007, vol. 448, pp. 313–317.PubMedCrossRefGoogle Scholar
  12. Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T.W., and Smith, A., Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition, PLoS Biol., 2008, vol. 6, p. e253.Google Scholar
  13. Stadtfeld, M., Brennand, K., and Hochedlinger, K., Reprogramming of Pancreatic β Cells into Induced Pluripotent Stem Cells, Curr. Biol., 2008, vol. 18, pp. 890–894.PubMedCrossRefGoogle Scholar
  14. Sugawara, A., Goto, K., Sotomaru, Y., Sofuni, T., and Ito, T., Current Status of Chromosomal Abnormalities in Mouse Embryonic Stem Cell Lines Used in Japan, Comp. Med., 2006, vol. 56, pp. 31–34.PubMedGoogle Scholar
  15. Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 2006, vol. 126, pp. 663–676.PubMedCrossRefGoogle Scholar
  16. Wiznerowicz, M. and Trono, D., Conditional Suppression of Cellular Genes: Lentivirus Vector-Mediated Drug-Inducible RNA Interference, J. Virol., 2003, vol. 77, pp. 8957–8961.PubMedCrossRefGoogle Scholar
  17. Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A., The Ground State of Embryonic Stem Cell Self-Renewal, Nature, 2008, vol. 453, pp. 519–523.PubMedCrossRefGoogle Scholar
  18. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A., Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, Science, 2007, vol. 318, pp. 1917–1920.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. A. Liskovykh
    • 1
    Email author
  • I. A. Chuykin
    • 2
  • A. Ranjan
    • 2
  • D. A. Safina
    • 1
  • E. N. Tolkunova
    • 1
  • Yu. M. Minina
    • 3
  • N. S. Zhdanova
    • 3
  • P. A. Dyban
    • 4
  • John J. Mullins
    • 5
  • E. I. Kostyleva
    • 1
  • E. V. Chikhirzhina
    • 1
  • M. Bader
    • 2
  • N. Alenina
    • 2
  • A. N. Tomilin
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Max-Delbrück Center for Molecular MedicineBerlin-BuchGermany
  3. 3.Institute of Cytology and GeneticsRussian Academy of ScienceNovosibirskRussia
  4. 4.nstitute of Experimental MedicineRussian Academy of Medical ScienceSt. PetersburgRussia
  5. 5.Centre for Cardiovascular ScienceEdinburghUK

Personalised recommendations