Skip to main content
Log in

Satellite DNA as a phylogenetic marker: Case study of three genera of the murine subfamily

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Satellite DNA (satDNA) represent tens of percent of the vertebrate genome. However, no full set of satDNA fragments has been determined for even one species. It is known that some genera possess a satDNA characteristic for that genus with species-specific modifications. We found that the pattern of hybridization of Mus musculus satDNA probes with M. spicilegus metaphase chromosomes was similar to, with slight differences from, that of M. musculus. No hybridization signal was observed if Mus musculus satDNA probes were hybridized with representatives of Sylvaemus and Apodemus genera. The amount of Mus musculus satDNA in the genomes of various species was evaluated by dot-hybridization. We revealed that genomes of close murine species had cenromeric and pericentromeric repeats belonging to the same families and were not found in remote species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MaSat:

major satellite

MiSat:

minor satellite

periCEN:

pericentromeric

satDNA:

satellite DNA

CEN:

centromeric

References

  • Arnason, U., and Widegren, B., Pinniped Phylogeny Enlightened by Molecular Hybridization using Highly Repetitive DNA, Mol. Biol. Evol., 1986, vol. 3, pp. 356–365.

    CAS  Google Scholar 

  • Beridze, T.G., Satellite DNA, M.: Nauka., 1982, vol. 120 c.

    Google Scholar 

  • Brown, S.D., and Dover, G.A., Conservation of Segmental Variants of Satellite DNA of Mus Musculus in a Related Species: Mus spretus, Nature, 1980, vol. 285, pp. 47–49.

    Article  PubMed  CAS  Google Scholar 

  • Buntjer, J.B., Lenstra, J.A., and Haagsma, N., Rapid Species Identification by using Satellite DNA Probes, Z. Lebensm Unters. Forsch., 1995, vol. 201, pp. 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Ciobanu, D.G., Grechko, V.V., and Darevsky, I.S., Molecular Evolution of Satellite DNA CLsat in Lizards from the Genus Darevskia (Sauria: Lacertidae): Correlation with Species Diversity, Russ. J. Genet., 2003, vol. 39, no. 11, pp. 1292–1305.

    Article  CAS  Google Scholar 

  • Ford, C.E., and Hamerton, J.Z., The Chromosomes of Man, Acta Genet. Satist., 1956, vol. 6, pp. 264.

    Google Scholar 

  • Garagna, S., Redi, C.A., Capanna, E. Andayani, N., Alfano, R.M., Doi, P., and Viale, G., Genome Distribution, Chromosomal Allocation, and Organization of the Major and Minor Satellite DNAs in 11 Species and Subspecies of the Genus Mus, Cytogenet. Cell Genet., 1993, vol. 64, pp. 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Grechko, V.V., Fedorova, L.V., Ryabinin, D.M., Ryabinina, N.L., Ciobanu, D.G., Kosushkin, S.A., and Darevsky, I.S., The Use of Nuclear DNA Molecular Markers for Studying Speciation and Systematics as Exemplified by the “Lacerta agilis complex” (Sauria: Lacertidae), Mol. Biol. (Mosc.), 2006, vol. 40, no. 1, pp. 51–62.

    Article  CAS  Google Scholar 

  • Kipling, D., Mitchell, A.R., Masumoto, H. Wilson, H.E., Nicol, L, and Cooke, H.J., CENP-B Binds a Novel Centromeric Sequence in the Asian Mouse Mus caroli, Mol. Cell. Biol., 1995, vol. 15, pp. 4009–4020.

    PubMed  CAS  Google Scholar 

  • Kit, S., Equilibrium Sedimentation in Density Gradients of DNA Preparations from Animal Tissues, J. Mol. Biol., 1961, vol. 3, pp. 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, B., Traut, W., and Garagna, S., Pericentric Satellite DNA and Molecular Phylogeny in Acomys (Rodentia), Chromosome Res., 1999, vol. 7, pp. 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova, I., Podgornaya, O., and Ferguson-Smith, M.A., High-Resolution Organization of Mouse Centromeric and Pericentromeric DNA, Cytogenet. Genome Res., 2006, vol. 112, pp. 248–255.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova, I.S., Prusov, A.N., Enukashvily, N.I., and Podgornaya, O.I., New Types of Mouse Centromeric Satellite DNAs, Chromosome Res., 2005, vol. 13, pp. 9–25.

    Article  PubMed  CAS  Google Scholar 

  • Lundrigan, B.L., Jansa, S.A., and Tucker, P.K., Phylogenetic Relationships in the Genus Mus, Based on Paternally, Maternally, and Biparentally Inherited Characters, Syst. Biol., 2002, vol. 51, no. 3, pp. 410–431.

    Article  PubMed  Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982. Translated under the title Metody geneticheskoi inzhenerii. Molekulyarnoe klonirovanie Moscow: Mir, 1984.

    Google Scholar 

  • Matsubara, K., Yamada, K., and Umemoto, S., Molecular Cloning and Characterization of the Repetitive DNA Sequences That Comprise the Constitutive Heterochromatin of the A and B Chromosomes of the Korean Field Mouse (Apodemus peninsulae, Muridae, Rodentia), Chromosome Res., 2008, vol. 16, pp. 1013–1026.

    Article  PubMed  CAS  Google Scholar 

  • Michaux, J.R., Chevret, P., and Filippucci, M.G., Phylogeny of the Genus Apodemus with a Special Emphasis on the Subgenus sylvaemus using the Nuclear IRBP Gene and Two Mitochondrial Markers: Cytochrome b and 12S rRNA, Mol. Phylogenet. Evol., 2002, vol. 23, pp. 123–136.

    Article  PubMed  CAS  Google Scholar 

  • Mravinac, B., and Plohl, M., Satellite DNA Junctions Identify the Potential Origin of New Repetitive Elements in the Beetle Tribolium madens, Gene, 2007, vol. 394, pp. 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Palomeque, T., Muoz-Lpez, M., Carrillo, J.A., and Lorite, P., Characterization and Evolutionary Dynamics of a Complex Family of Satellite DNA in the Leaf Beetle Chrysolina carnifex (Coleoptera, Chrysomelidae), Chromosome Res., 2005, vol. 13, pp. 795–807.

    Article  PubMed  CAS  Google Scholar 

  • Pederson, T., Half a Century of “the Nuclear Matrix”, Mol. Biol. Cell., 2000, vol. 11, pp. 799–805.

    PubMed  CAS  Google Scholar 

  • Pietras, D.F., Bennett, K.L., and Siracusa, L.D., Construction of a Small Mus musculus Repetitive DNA Library: Identification of a New Satellite Sequence in Mus musculus, Nucleic Acids Res., 1983, vol. 11, pp. 6965–6983.

    Article  PubMed  CAS  Google Scholar 

  • Podgornaya, O.I., Voronin, A.P., and Enukashvily, N.I., Structure-specific DNA-Binding Proteins as the Foundation for Three-dimensional Chromatin Organization, Int. Rev. Cytol., 2003, vol. 224, pp. 227–296.

    Article  PubMed  CAS  Google Scholar 

  • Pons, J., Bruvo, B., Petitpierre, E., Plohl, M., Ugarkovic, D., and Juan, C., Complex Structural Features of Satellite DNA Sequences in the Genus Pimelia (Coleoptera: Tenebrionidae): Random Differential Amplification from a Common ’satellite DNA Library’, Heredity, 2004, vol. 92, pp. 418–427.

    Article  PubMed  CAS  Google Scholar 

  • Pons, J., Petitpierre, E., and Juan, C., Evolutionary Dynamics of Satellite DNA Family PIM357 in Species of the Genus Pimelia (Tenebrionidae, Coleoptera), Mol. Biol. Evol., 2002, vol. 19, pp. 1329–1340.

    PubMed  CAS  Google Scholar 

  • Saito, Y., Edpalina, R.R., and Abe, S., Isolation and Characterization of Salmonid Telomeric and Centromeric Satellite DNA Sequences, Genetica, 2007, vol. 131, pp. 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Siracusa, L.D., Chapman, V.M., and Bennett, K.L., Use of Repetitive DNA Sequences to Distinguish Mus musculus and Mus caroli Cells by in situ Hybridization, J. Embr. Exp. Morphol., 1983, vol. 73, pp. 163–178.

    CAS  Google Scholar 

  • Sutton, W.D., and McCallum, M., Related Satellite DNA’s in the Genus Mus, J. Mol. Biol., 1972, vol. 71, pp. 633–652.

    Article  PubMed  CAS  Google Scholar 

  • Ugarkovi, D., Durajlija, S., and Plohl, M., Evolution of Tribolium madens (Insecta, Coleoptera) Satellite DNA through DNA Inversion and Insertion, J. Mol. Evol., 1996, vol. 42, pp. 350–358.

    Google Scholar 

  • Waring, M., and Britten, R.J., Nucleotide Sequence Repetition: a Rapidly Reassociating Fraction of Mouse DNA, Science, 1966, vol. 154, pp. 791–794.

    Article  PubMed  CAS  Google Scholar 

  • Wong, A.K.C., and Rattner, J.B., Sequence Organization and Cytological Localization of the Minor Satellite of Mouse, Nucleic Acids Res., 1998, vol. 16, pp. 11645–11661.

    Article  Google Scholar 

  • Yonekawa, H., Moriwaki, K., Gotoh, O, Hayashi, JI, Watanabe, J, Miyashita, N, Petras, ML, and Tagashira, Y.., Evolutionary Relationships among Five Subspecies of Mus musculus Based on Restriction Enzyme Cleavage Patterns of Mitochondrial DNA, Genetics, 1981, vol. 98, pp. 801–816.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Ostromyshenskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostromyshenskii, D.I., Kuznetsova, I.S., Golenischev, F.N. et al. Satellite DNA as a phylogenetic marker: Case study of three genera of the murine subfamily. Cell Tiss. Biol. 5, 543–550 (2011). https://doi.org/10.1134/S1990519X11060101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X11060101

Keywords

Navigation