Skip to main content
Log in

Effect of red pigment on insulin fibril formation in vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The influence of red pigment isolated from yeast Saccharomyces cerevisiae and its low molecular weight derivate on insulin amyloid fibril formation in vitro was studied. The red pigment derivative, which presumably lacked phosphoribosyl moiety due to acid hydrolysis, retained the ability to inhibit fluorescence intensity (FI) of amyloid bound Thioflavine T. It was found that FI inhibition depended on the concentration of both pigment forms. Both forms were also able to compete with Thioflavine T for amyloid fibril binding. Electron microscopy revealed that fibrils reduced in size in the presence of red pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjou, K.T., Simoneau, S., Sales, N., Lamoury, F., Dormont, D., Papy-Garcia, D., Barritault, D., Deslys, J.-P., and Lasmezas, C.I., A Novel Generation of Heparan Sulfate Mimetics for the Treatment of Prion Diseases, J. Gen. Virol., 2003, vol. 84, pp. 2595–2603.

    Article  PubMed  CAS  Google Scholar 

  • Bate, C., Salmona, M., Diomede, L., and Williams, A., Squalestatin Cures Prion-infected Neurons and Protects against Prion Neurotoxicity, J. Biol. Chem., 2004, vol. 279, pp. 14983–14990.

    Article  PubMed  CAS  Google Scholar 

  • Bieschke, J., Russ, J., Friedrich, R.P., Ehrnhoefer, D.E., Wobst, H., Neugebauer, K., and Wanker, E.E.., EGCG Remodels Mature α-Synuclein and Amyloid-Fibrils and Reduces Cellular Toxicity, Proc. Natl. Acad. Sci. USA., 2010, vol. 107, pp. 7710–7715.

    Article  PubMed  CAS  Google Scholar 

  • Charveriat, M., Reboul, M., Wang, Q., le, Picoli, C., Lenuzza, N., Montagnac, A., Nhiri, N., Jacquet, E., Gueritte, F., Lallemand, J.-Y., Deslys, J.-P., and Mouthon, F., New Inhibitors of Prion Replication that Target the Amyloid Precursor, J. Gen. Virol., 2009, vol. 90, pp. 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff, Y.O. (Ed.), Protein-Based Inheritance, Austin, Texas: Landes Bioscience, 2007.

    Google Scholar 

  • Chernoff, Y.O., Cellular Control of Prion Formation and Propagation in Yeast, in Prions and Prion Diseases: Current Perspectives, Wymondham: Horizon Bioscience, 2004, pp. 257–303.

    Google Scholar 

  • Chernoff, Y.O., Uptain, S.M., and Lindquist, S.L., Analysis of Prion Factors in Yeast, Meth. Enzymol., 2002, vol. 351, pp. 499–537.

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro, Y., Lima, L.M.T.R., Gomes, M.P.B., Foguel, D., and Silva, J.L., Modulation of Prion Protein Oligomerization, Aggregation, and β-Sheet Conversion by 4,4′X-Dianilino-1,1’X-Binaphthyl-5,5′X-Sulfonate (bis-ANS), J. Biol. Chem., 2004, vol. 279, pp. 5346–5352.

    Article  PubMed  CAS  Google Scholar 

  • Demaimay, R., Chesebro, B., and Caughey, B., Inhibition of Formation of Protease-Resistant Prion Protein by Try-pan Blue, Sirius Red, Other Congo Red Analogs, Arch. Virol. Suppl., 2000, vol. 16, pp. 277–83.

    PubMed  Google Scholar 

  • Ehrnhoefer, D.E., Biesche, J., Boeddrich, A., Herbst, M., Masino, L., Lurz, R., Engemann, S., Pastore, A., and Wanker, E.E., EGCG Redirects Amyloidogenic Polypeptides into Unstructured, Off-Pathway Oligomers, Nature Struct. Mol. Biol., 2008, vol. 15, pp. 558566.

    Article  Google Scholar 

  • Ghaemmaghami, S., May, B.C.H., Renslo, A.R., and Prusiner, S.B., Discovery of 2-Aminothiazoles as Potent Antiprion Compounds, J. Gen. Virol., 2010, vol. 84, pp. 3408–3412.

    CAS  Google Scholar 

  • Herczenik, E., and Gebbink, M.F.B.G., Molecular and Cellular Aspects of Protein Misfolding and Disease, FASEB J., 2008, vol. J 22, pp. 2115–2133.

    Article  Google Scholar 

  • Hosokawa-Muto, J., Kamatari, Y.O., Nakamura, H.K., and Kuwata, K., Variety of Antiprion Compounds Discovered through an in Silico Screen Based on Cellular-Form Prion Protein Structure: Correlation between Antiprion Activity and Binding Affinity, Antimicrob. Agents Chemother., 2009, vol. 53, pp. 765–771.

    Article  PubMed  CAS  Google Scholar 

  • Kocisko, D.A., Baron, G.S., Rubenstein, R., Chen, J., Kuizon, S., and Caughey, B., New Inhibitors of Scrapie-Associated Prion Protein Formation in a Library of 2000 Drugs and Natural Products, J. Virol., 2003, vol. 77, pp. 10288–10294.

    Article  PubMed  CAS  Google Scholar 

  • Korth, C., May, B.C., Cohen, F.E., and Prusiner, S.B., Acridine and Phenothiazine Derivatives as Pharmacotherapeutics for Prion Disease, Proc. Natl. Acad. Sci. USA., 2001, vol. 98, pp. 9836–9841.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, M.R.H., Bromley, E.H.C., and Donald, A.M., The Binding of Thioflavin-T to Amyloid Fibrils: Localization Implications, J. Struct. Biol., 2004, vol. 149, pp. 30–37.

    Article  Google Scholar 

  • Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya shkola, 1990.

    Google Scholar 

  • Lamberto, G.R., Binolfi, A., Orcellet, M.L., Bertoncini, C.W., Zweckstetter, M., Griesinger, C., and Fernandez, C.O., Structural and Mechanistic Basis Behind the Inhibitory Interaction of PcTS on A-synuclein Amyloid Fibril Formation, Proc. Natl. Acad. Sci. USA., 2009, vol. 106, pp. 21057–21062.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, V.A., Lumicisi, B., Welton, J., Machalek, D., Gouramanis, K., Klemm, H.M., Stewart, J.D., Masters, C.L., Hoke, D.E., Collins, S.J., and Hill, A.F., Glycosaminoglycan Sulphation Affects the Seeded Misfolding of a Mutant Prion Protein, PLoS One, 2010, vol. 5, pp. e12351.

    Article  PubMed  Google Scholar 

  • Nevzglyadova, O.V., Artemov, A.V., Mittenberg, A.G., Mikhailova, E.V., Kuznetsova, I.M., Turoverov, K.K., and Soidla, T.R., The Effect of Red Pigment on Amyloidization of Yeast Proteins, Tsitologiia, 2010, vol. 52, no. 1, pp. 80–93.

    CAS  Google Scholar 

  • Nevzglyadova, O.V., Kuznetsova, I.M., Mikhailova, E.V., Artamonova, T.O., Artemov, A.V., Mittenberg, A.G., Kostyleva, E.I., Turoverov, K.K., Khodorkovskii, M.A., and Soidla, T.R., The Effect of red Pigment on Amyloidization of Yeast Proteins, Yeast, 2011, vol. 00, pp. 00–00.

    Google Scholar 

  • Nevzglyadova, O.V., K, Artemov, A.V., K, Mittenberg, A.G., Mikhailova, E.V., Kuznetsova, I.M., Turoverov, K.K., and Soidla, T.R., Yeast Protein Aggregates, Containing Chaperones and Glucose Metabolism Enzymes, in Handbook of Molecular Chaperones: Roles, Structures and Mechanisms, New York: Nova Science Publ., 2010, Part 6, pp. 241–270.

    Google Scholar 

  • Nunziante, M., Kehler, C., Maas, E., Kassack, M.U., Groschup, M., and Schatz, H.M., Charged Bipolar Suramin Derivatives Induce Aggregation of the Prion Protein at the cell Surface and Inhibit PrPSc Replication, J. Cell. Sci., 2005, vol. 118, pp. 4959–4973.

    Article  PubMed  CAS  Google Scholar 

  • Phuan, P.-W., Zorn, J.A, Safar, J., Giles, K, Prusiner, S.B., Cohen, F.E., and May, B.C.H., Discriminating Between Cellular and Misfolded Prion Protein by Using Affinity to 9-Aminoacridine Compounds, J. Gen. Virol., 2007, vol. 88, pp. 1392–1401.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B., Shattuck Lecture-Neurodegenerative Diseases and Prions, N. Engl. J. Med., 2001, vol. 344, pp. 1516–1526.

    Article  PubMed  CAS  Google Scholar 

  • Saupe, S.J., New Anti-prion Drugs make Yeast Blush, Trends Biotechnol., 2003, vol. 21, pp. 516–519.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer, N.W., Broadley, S.A., Hirschberger, T., Tavan, P., Kretzschmar, H.A., Giese, A., Haass, C., Hart, F.U., and Schmid, B., Identification of Anti-prion Compounds as Efficient Inhibitors of Polyglutamine Protein Aggregation in a Zebrafish Model, J Biol. Chem., 2007, vol. 282, pp. 9195–9203.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, F, Fink, GR, and Hicks, JB., Laboratory Course Manual for Methods in Yeast Genetics, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1986.

    Google Scholar 

  • Smirnov, M.N., Smirnov, V.N., Budowsky, E.I, Inge-Vechtomov, S.G., and Serebrjakov, N.G., Red Pigment of Adenine-Deficient Yeast Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 1967, vol. 2, pp. 299–304.

    Article  Google Scholar 

  • Smirnov, M.N., The Study of the Red Pigment of the Adenine-Dependent Mutant of the Yeast Saccharomyces cerevisiae, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrd, 1967.

  • Solassol, J., Crozet, C., Perrier, V., Leclaire, J., Beranger, F., Caminade, A.-M., Meunier, B., Dormont, D., Majoral, J.-P., and Lehmann, S., Cationic Phosphorus-containing Dendrimers Reduce Prion Replication Both in Cell Culture and in Mice Infected with Scrapie, J. Gen. Virol., 2004, vol. 85, pp. 1791–1799.

    Article  PubMed  CAS  Google Scholar 

  • Teruya, K., Kawagoe, K., Kimura, T., Chen, C.-J., Sakasegawa, Y., and Doh-ura, K., Amyloidophilic Compounds for Prion Diseases, Infectious Disorders-Drug Targets, 2009, vol. 9, pp. 15–22.

    PubMed  CAS  Google Scholar 

  • Trevitt, C.R., and Collinge, J., A Systematic Review of Prion Therapeutics in Experimental Models, Brain, 2006, vol. 129, pp. 2241–2265.

    Article  PubMed  Google Scholar 

  • Tribouillard, D., Bach, S., Gug, F., Desban, N., Beringue, V., Andrieu, T., Dormont, D., Galons, H., Laude, H., Vilette, D., and Blondel, M., Using Budding Yeast to Screen for Antiprion Drugs, Biotechnology, 2006, vol. J 1, pp. 58–67.

    Google Scholar 

  • Tribouillard-Tanvier, D., Beringue, V., Desban, N., Gug, F., Bach, S., Voisset, C., Galons, H., Laude, H., Vilette, D., and Blondel, M., Antihypertensive Drug Guanabenz Is Active in vivo against Both Yeast and Mammalian Prions, PLoS One, 2008, vol. 3, pp. e1981.

    Article  PubMed  Google Scholar 

  • Uversky, V.N., Amyloidogenesis of Natively Unfolded Proteins, Curr. Alzheimer Res., 2008, vol. 5, p. 26087.

    Article  Google Scholar 

  • Vishnevskaya, A.B., Kushnirov, V.V., and Ter-Avanesyan, M.D., Neurodegenerative Amyloidoses: Yeast Model, Mol. Biol. (Mosc.), 2007, vol. 41, no. 2, pp. 308–315.

    Article  CAS  Google Scholar 

  • Wang, H., Duennwald, M.L., Roberts, B.E., Rozeboom, L.M., Zhang, Y.L., Steele, A.D., Krishnan, R., Su, L.J., Griffin, D., Mukhopadhyay, S., Hennessy, E.J., Weigele, P., Blanchard, B.J., King, J., Deniz, A.A., Buchwald, S.L., Ingram, V.M., Lindquist, S., and Shorter, J., Direct and Selective Elimination of Specific Prions and Amyloids by 4,5-Dianilinophthalimide and Analogs, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 7159–7164.

    Article  PubMed  CAS  Google Scholar 

  • Webb, S., Lekishvili, T., Loeschner, C., Sellarajah, S., Prelli, F., Wisniewski, T., Gilbert, I.H., and Brown, T.R., Mechanistic Insights into the Cure of Prion Disease by Novel Antiprion Compounds, J. Virol., 2007, vol. 81, pp. 10729–10741.

    Article  PubMed  CAS  Google Scholar 

  • Wickner, R.B., Edskes, H.K., Shewmaker, F., Nakayashiki, T., Engel, A., McCann, L., and Kryndushkin, D., Yeast Prions: Evolution of the Prion Concept, Prion, 2007, vol. 1, pp. 94–100.

    Article  PubMed  Google Scholar 

  • Wickner, R.B., Shewmaker, F., Edskes, H., Kryndushkin, D., Nemecek, J., McGlinchey, R., Bateman, D., and Winchester, C-L., Prion Amyloid Structure Explains Templating: How Proteins Can Be Genes, FEMS Yeast Res., 2010, vol. 10, pp. 980–991.

    Article  PubMed  CAS  Google Scholar 

  • Wong, C., Xiong, L.W., Horiuchi, M., Raymond, L., Wehrly, K., Chesebro, B., and Caughey, B., Sulfated Glycans and Elevated Temperature Stimulate PrPSc-Dependent Cell Free Formation of Protease-resistant Prion Protein, EMBO J., 2001, vol. J 20, pp. 377–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mikhailova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailova, E.V., Artemov, A.V., Snigirevskaya, E.S. et al. Effect of red pigment on insulin fibril formation in vitro. Cell Tiss. Biol. 5, 580–585 (2011). https://doi.org/10.1134/S1990519X11060095

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X11060095

Keywords

Navigation