Skip to main content
Log in

Elimination of cells with abnormal nuclei in human epidermoid carcinoma cell line A431 by α-lipoic acid

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Skin is usually exposed to adverse environmental conditions that may cause pathological cell proliferation and malignant transformation. Antioxidants are able to affect these processes and eliminate transformed cells. The purpose of this work was to investigate the effect of α-lipoic acid (ALA) on human epidermoid carcinoma cell line A431. It was found that 100, 200, 300, 500 μM ALA added for 24, 48, 72 h inhibited cell proliferation and stimulated apoptosis. Most dying cells have abnormal nuclei (micronuclei, giant nuclei, nuclei with buds). Electron microscopy showed that cells with normal nuclear phenotypes after treatment with 200 μM ALA for 48 h had ultrastructural organizations typical for control cells. Thus, α-ALA not only triggers the apoptosis of carcinoma cells, but it may also activate the mechanism for eliminating cells with abnormal numbers of chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AI:

apoptocic index

ROS:

reactive oxygen species

ALA:

[alpha]-lipoic acid

MI:

mitotic index

References

  • Agarwal, M.L., Taylor, W.R., Chernov, M.V., Chernova, O.B., and George, R. Stark, G.R., The p53 Network., J. Biol. Chem., 1998, vol. 273, pp. 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Bilska, L. and Wtodek, L., Lipoic Acid—the Drug or the Future? Pharm. Reports, 2005, vol. 57, pp. 570–577.

    CAS  Google Scholar 

  • Brash, D.E. and Havre, P.A., New Careers for Antioxidants, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 13969–13971.

    Article  CAS  PubMed  Google Scholar 

  • Byun, C.H., Koh, J.M., Kim, D.K., Park, S.I., Lee, K.U., and Kim, G.S., Alpha-Lipoic Acid Inhibits TNF-AlphaInduced Apoptosis in Human Bone Marrow Stromal Cells., J. Bone Miner Res., 2005, vol. 20, pp. 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  • Cakatay, U., Pro-Oxidant Actions of Alpha-Lipoic Acid and Dihydrolipoic Acid. Med. Hypotheses, 2006, vol. 66, no. 1, pp. 110–117.

    Article  CAS  PubMed  Google Scholar 

  • Chesnokova, N.P., Ponukalina, E.V., and Bizenkova, M.N., General Characteristic of the Sources of Generation of Free Radicals and Antioxidant Systems. Advances in Modern Natural Science, Med. Nauki, 2006, vol. 7, pp. 37–41.

    Google Scholar 

  • Dovinova, I., Novotny, L., Rauko, P., and Kvasnicka, P., Combined Effect of Lipoic Acid and Doxorubicin in Murine Leukemia, Neoplasma, 1999, vol. 46, pp. 237–241.

    CAS  PubMed  Google Scholar 

  • Droge, W., Free Radicals in the Physiological Control of Cell Function, Physiol. Rev., 2001, vol. 82, pp. 47–95.

    Google Scholar 

  • Fenech, M., The Cytokinesis-Block Micronucleus Technique and Its Application to Genotoxicity Studies in Human Populations, Env. Health Perspect. Suppl., 1994, vol. 101, pp. 101–107.

    Article  Google Scholar 

  • Grady, W.M., Genomic Instability and Colon Cancer, Cancer Metastasis Rev., 2004, vol. 23, pp. 11–27.

    Article  CAS  PubMed  Google Scholar 

  • Guan, Z., Wang, X.R., Zhu, X.F., Huang, X.F., Xu, J., Wang, L.H., Wan, X.B., Long, Z.J., Liu, J.N., Feng, G.K., Huang, W., Zeng, Y.X., Chen, F.J., and Liu, Q., Aurora-a, a Negative Prognostic Marker, Increases Migration and Decreases Radiosensitivity in Cancer Cells, Cancer Res., 2007, vol. 67, pp. 10 436–10 444.

    Article  CAS  Google Scholar 

  • Haupt, S., Berger, M., Goldberg, Z., and Haupt, Y., Apoptosis—the p53 Network, J. Cell Sci., 2003, vol. 116, pp. 4077–4085.

    Article  CAS  PubMed  Google Scholar 

  • Hultberg, M. and Hultberg, B., The Effect of Different Antioxidants on Glutathione Turnover in Human Cell Lines and Their Interaction with Hydrogen Peroxide, Chem. Biol. Interac., 2006, vol. 163, pp. 192–198.

    Article  CAS  Google Scholar 

  • Hupp, T.R., Sparks, A., and Lane, D.P., Small Peptides Activate the Latent Sequence-Specific DNA Binding Function of p53, Cell, 1995, vol. 83, pp. 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez, G.S., Khan, S.H., Stommel, J.M., and Wahl, G.M., P53 Regulation by Post-Translational Modification and Nuclear Retention in Response to Diverse Stresses, Oncogene, 1999, vol. 18, pp. 7656–7665.

    Article  CAS  PubMed  Google Scholar 

  • Kim, A.L., Athar, M., Bickers, D.R., and Gautier, J.J., Ultraviolet-B-Induced G1 Arrest Is Mediated by Downregulation of Cyclin-Dependent Kinase 4 in Transformed Keratinocytes Lacking Functional p53, Invest. Dermatol., 2002, vol. 118, pp. 818–824.

    Article  CAS  Google Scholar 

  • Kisurina-Evgeneva, O.P., Bryantseva, S.A., Shtil, A.A., and Schnischenko, G.E., Antitubulin Agents Can Initiate Different Apoptotic Pathways, Biofizika, 2006, vol. 51, no. 5, pp. 875–879.

    CAS  Google Scholar 

  • Kurose, A., Sasaki, K., Ishida, Y., Shibata, Y., Yanagisawa, S., Kanno, C., Uesugi, N., Wada, T., and Miura, Y., Flow Cytometric Analysis of p53 Expression during the Cell Cycle, Oncology, 1995, vol. 52, pp. 123–127.

    Article  CAS  PubMed  Google Scholar 

  • Kwok, T.T., Mok, C.H., and Menton-Brennan, L., Up-Regulation of a Mutant Form of p53 by Doxorubicin in Human Squamous Carcinoma Cells, Cancer Res., 1994, vol. 54, pp. 2834–2836.

    CAS  PubMed  Google Scholar 

  • Lange, B.M., Integration of the Centrosome in Cell Cycle Control. Stress Response and Signal Transduction Pathways, Curr. Opin. Cell Biol., 2002, vol. 14, no. 1, pp. 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Levy, E.J., Anderson, M.E., and Meister, A., Transport of Glutathione Diethyl Ester into Human Cells, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 9171–9175.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, S.A., Laursen, P.B., Pat, B.K., Gobe, G.C., and Coombes, J.S., Bcl-2 in Endothelial Cells Is Increased by Vitamin E and Alpha-Lipoic Acid Supplementation but not Exercise Training, J. Mol. Cell Cardiol., 2005, vol. 38, pp. 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Moll, U.M., Wolff, S., Speidel, D., and Deppert, W., Transcription-Independent Proapoptotic Functions of p53, Curr. Opin. Cell Biol., 2005, vol. 17, pp. 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Moungjaroen, J., Nimmannit, U., Callery, P.S., Wang, L., Azad, N., Lipipun, V., Chanvorachote, P., and Rojanasakul, Y., Reactive Oxygen Species Mediate Caspase Activation and Apoptosis Induced by Lipoic Acid in Human Lung Epithelial Cancer Cells through Bcl-2 Down-Regulation, J. Pharmacol. Exp. Ther., 2006, vol. 319, pp. 1062–1069.

    Article  CAS  PubMed  Google Scholar 

  • Nagai, H., Noguchi, T., Takeda, K., and Ichijo, H., Pathophysiological Roles of ASKI-MAP Kinase Signaling Pathways, J. Biochem. Mol. Biol., 2007, vol. 40, pp. 1–6.

    CAS  PubMed  Google Scholar 

  • Nakano, H., Nakajima, A., Sakin-Komazawa, S., Piao, J.H., Xue, X., and Okumura, K., Reactive Oxygen Species Mediate Crosstalk between NF-jB and JNKf, Cell Death Differ., 2006, vol. 13, pp. 730–737.

    Article  CAS  PubMed  Google Scholar 

  • Oda-Sato, E. and Tanaka, N., Abnormal Centrosome Amplification and Aurora-A Activation in p53-Deficient Cells, J. Nippon Med. Sch., 2007, vol. 74, pp. 384–385.

    Article  PubMed  Google Scholar 

  • Pan, M.H., Sin, Y.H., Lai, C.S., Wang, Y.J., Lin, J.K., Wang, M., and Ho, C.T., Induction of Apoptosis by 1-(2Hydroxy-5-Methylphenyl)-3-Phenyl-1,3-Propanedione through Reactive Oxygen Species Production, Gadd153 Expression, and Caspases Activation in Human Epidermoid Carcinoma Cells, J. Agric. Food Chem., 2005, vol. 53, pp. 9039–9049.

    Article  CAS  PubMed  Google Scholar 

  • Papa, S., Bubici, C., Zazzeroni, F., Pham, C.G., Kuntzen, C., Knabb, J.R., Dean, K., and Franzoso, G., The NF-jB-Mediated Control of the JNK Cascade in the Antagonism of Programmed Cell Death in Health and Disease, Cell Death Differ., 2006, vol. 13, pp. 712–729.

    Article  CAS  PubMed  Google Scholar 

  • Park, D.J., Nakamura, H., Chumakov, A.M., Said, J.W., Miller, C.W., Chen, D.L., and Koeffler, H.P., Transactivational and DNA Binding Abilities of Endogenous p53 in p53 Mutant Cell Lines, Oncogene, 1994, vol. 9, pp. 1899–1906.

    CAS  PubMed  Google Scholar 

  • Pias, E.K. and Aw, T.Y., Apoptosis in Mitotic Competent Undifferentiated Cells Is Induced by Cellular Redox Imbalance Independent of Reactive Oxygen Species Production, Faseb J., 2002, vol. 16, pp. 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Prahalathan, C., Selvakumar, E., Varalakshmi, P., Kumarasamy, P., and Saravanan, R., Salubrious Effects of Lipoic Acid Against Adriamycin-Induced Clatogenesis and Apoptosis in Wistar Rat Bone Marrow Cells, Toxicology, 2006, vol. 222, pp. 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Qanungo, S., Wang, M., and Nieminen, A.L., N-Acetyl-L-Cysteine Enhances Apoptosis Through Inhibition of Nuclear Factor-Kappa b in Hypoxic Murine Embryonic Fobroblasts., J. Biol. Chem., 2004, vol. 279, pp. 50 455–50 464.

    Article  CAS  Google Scholar 

  • Rajagopalan, H. and Lengauer, C., Aneuploidy and Cancer, Nature, 2004, vol. 432, pp. 338–341.

    Article  CAS  PubMed  Google Scholar 

  • Scian, M.J., Stagliano, K.E., Ellis, M.A., Hassan, S., Bowman, M., Miles, M.F., Deb, S.P., and Deb, S., Modulation of Gene Expression by Tumor-Derived p53, Mutants Cancer Res., 2004, vol. 64, pp. 7447–7454.

    Article  CAS  Google Scholar 

  • Seo, Y.R., Fishel, M.L., Amundson, S., Kelley, M.R., and Smith, M.L., Implication of p53 in Base Excision DNA Repair: in Vivo Evidence, Oncogene, 2002, vol. 21, pp. 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Simbula, G., Columbano, A., Ledda-Columbano, G.M., Sanna, L., Deidda, M., Diana, A., and Pibiri, M., Increased ROS Generation and p53 Activation in α-Lipoic AcidInduced Apoptosis of Hepatoma Cells, Apoptosis, 2007, vol. 12, pp. 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Thannickal, V.J. and Fanburg, B.L., Reactive Oxygen Species in Cell Signaling, Am., J. Physiol. Lung Cell Mol. Physiol., 2000, vol. 279, pp. 1005L–1028L.

    Google Scholar 

  • Valko, M., Rhodes, C.J., Moncol., J., Izakovic, M., and Mazur, M., Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer, Chem. Biol Interact., 2006, vol. 160, pp. 1–40.

    Article  CAS  PubMed  Google Scholar 

  • Van de Mark, K., Chen, J.S., Steliou, K., Perrine, S.P., and Faller, D.V., α-Lipoic Aid Induces P27Kip-Dependent Cell Cycle Arrest in Non-Transformed Cell Lines and Apoptosis in Tumor Cell Lines., J. Cell. Physiol., 2003, vol. 194, pp. 325–340.

    Article  PubMed  Google Scholar 

  • Van Schooten, F.J., Nia, A.B., De Flora, S., D’Agostini, F., Izzotti, A., Camoirano, A., Balm, A.J.M., Dallinga, J.W., Bast, A., Haenen, G.R.M.M., Van’t Veer, L., Baas, P., Sakai, H., and Van Zandwijk, N., Effects of Oral Administration of N-Acetyl-L-Cysteine: A Multi-Biomarker Study in Smokers, Cancer Epidemiol. Biomarkers Prev., 2002, vol. 11, pp. 167–175.

    PubMed  Google Scholar 

  • Weaver, B.A. and Cleveland, D.W., Does Aneuploidy Cause Cancer?, Curr. Opin. Cell Biol., 2006, vol. 18, pp. 658–667.

    Article  CAS  PubMed  Google Scholar 

  • Weinmann, L., Wischhusen, J., Demma, M.J., Naumann, U., Roth, P., Dasmahapatra, B., and Weller, M., A Novel p53 Rescue Compound Induces p53-Dependent Growth Arrest and Sensitizes Glioma Cells to Apo2L/TrailInduced Apoptosis, Cell Death Differ., 2008, vol. 15, pp. 718–729.

    Article  CAS  PubMed  Google Scholar 

  • Wenzel, U., Nuclek, A., and Daniel, H., Alpha-Lipoic Acid Induces Apoptosis in Human Colon Cancer Cells by Increasing Mitochondrial Respiration with a Concomitant O2-Generation, Apoptosis, 2005, vol. 10, pp. 359–368.

    Article  CAS  PubMed  Google Scholar 

  • Wong, R.P., Tsang, W.P., Chau, P.Y., Co, N.N., Tsant, T.Y., and Kwok, T.T., P53-R273H Gains New Function in Induction of Drug Resistance Through down-Regulation of Procaspase-3, Mol. Cancer Ther., 2007, vol. 6, pp. 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  • You, H., Yu, W., Sanders, B.G., and Kline, K., Rrr-α-Tocopheryl Succinate Induces Mda-Mb-435 and Mcf-7 Human Breast Cancer Cells to Undergo Differentiation, Cell Growth Differ., 2001, vol. 12, pp. 471–480.

    CAS  PubMed  Google Scholar 

  • Zhang, W.J., Wei, H., Hagen, T., and Frei, B., α-Lipoic Acid Attenuates LPS-Induced Inflammatory Responses by Activating the Phosphoinositide 3-Kinase/Akt Signaling Pathway, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 4077–4082.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Kisurina-Evgenieva.

Additional information

Original Russian Text © O.P. Kisurina-Evgenieva, G.E. Onishchenko, 2010, published in Tsitologiya, Vol. 52, No. 3, 2010, pp. 225–234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisurina-Evgenieva, O.P., Onishchenko, G.E. Elimination of cells with abnormal nuclei in human epidermoid carcinoma cell line A431 by α-lipoic acid. Cell Tiss. Biol. 4, 177–184 (2010). https://doi.org/10.1134/S1990519X10020070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X10020070

Key words

Navigation