Skip to main content

Activity of matrix metalloproteinases in normal and transformed mouse fibroblasts exposed to antioxidants

Abstract

The effects of two antioxidants on the activity of matrix metalloproteinases (MMP) secreted by normal (3T3) and transformed (3T3-SV40) mouse fibroblasts were examined. We compared the action of N-acetylcysteine (NAC) and alpha-lipoic acid (ALA) on two gelatinases, MMP-2 and MMP-9. Gel zymography demonstrated that activity of MMP-2 was higher in normal 3T3 cells, whereas, in transformed 3T3-SV40 cells, the MMP-9 activity was higher. NAC treatment for 2–6 h completely suppressed MMP-2 and MMP-9 activity in both cell lines. The inhibitory effect did not depend on NAC concentration within the range of 1–10 mM. ALA (1.2 mM) did not affect the cells very dramatically; it decreased the MMP-2 activity in both types of cells. MMP-9 activity in the presence of ALA was decreased in 3T3 cells and slightly increased in 3T3-SV40 cells. The activity of the membrane bound and intracellular MMP was not changed under the same conditions. In conclusion, the altered activity of MMP in the presence of antioxidant may influence the intracellular signaling and cell functions.

This is a preview of subscription content, access via your institution.

Abbreviations

MMP:

matrix metalloproteinase

ALA:

alpha-lipoic acid

GSH:

reduced glutathione

NAC:

N-acetylcysteine

References

  1. Björklund, M. and Koivunen, E., Gelatinase-Mediated Migration and Invasion of Cancer Cells, Biochim. biophys. acta., 2005, vol. 1755, pp. 37–69.

    PubMed  Google Scholar 

  2. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    PubMed  Article  CAS  Google Scholar 

  3. Filatova N. A., Kirpichnikova K.M, Gamaley I.A. Reorganization of Actin Cytoskeleton in 3T3-SV40 Cells and their Sensitivity to Lysis by Natural Killer Cells, Cell Tis. Biol., 2008, vol. 2, no. 2, pp. 261–267.

    Google Scholar 

  4. Filatova, N.A., Kirpichnikova, K.M., Gamaley, I.A., N-Acetylcysteine Reduces Transformed 3T3-SV40 Fibroblast Sensitivity to Lysis by Natural Killer Cells, Tsitologiia, 2006, vol. 48, no. 5, pp. 438–442.

    PubMed  CAS  Google Scholar 

  5. Gamaley, I.A., Aksenov, N.D., Efremova, T.N., and Kirpichnikova, K.M., Effect of Agents Changing the Intracellular Level of Reactive Oxygen Species on the Cell Cycle Phase Distribution in 3T3 and 3T3SV40 Cell Lines, Tsitologiia, 2003, vol. 45, pp. 26–33.

    Google Scholar 

  6. Gamaley, I., Efremova, T., Kirpichnikova, K., Kever, L., Komissarchik, Y., Polozov, Yu., and Khaitlina, T., N-Acetylcysteine-Induced Changes in Susceptibility of Transformed Eukaryotic Cells to Bacterial Invasion, Cell Biol. Int., 2006, vol. 30, pp. 319–325.

    PubMed  Article  CAS  Google Scholar 

  7. Goldman, S., Weiss, A., Eyali, V., and Shalev, E., Differential Activity of the Gelatinases (Matrix Metalloproteinases 2 and 9) in the Fetal Membranes and Decidua, Associated with Labour, Mol. Hum. Reprod., 2003, vol. 9, pp. 367–373.

    PubMed  Article  CAS  Google Scholar 

  8. Hwang, E.-S. and Lee, H.J., Allyl Isothiocyanate and Its NAcetylcysteine Conjugate Suppress Metastasis via Inhibition of Invasion, Migration, and Matrix Metalloproteinase-2/-9 Activities in SK-Hep 1 Human Hepatoma Cells, Exp. Biol. Med., 2006, vol. 231, pp. 421–430.

    CAS  Google Scholar 

  9. Kawakami, S., Kageyama, Y., Fujii, Y., Kihara, K., and Oshima, H., Inhibitory Effect of N-Acetylcysteine on Invasion and MMP-9 Production of T24 Human Bladder Cancer Cells, Anticancer Res., 2001, vol. 21, pp. 213–219.

    PubMed  CAS  Google Scholar 

  10. Klisho, E.V., Kondakova, I.V., Choinzonov, E.L., and Vasil’eva, O.S., Prognostic Significance of Proteases in Patients with Squamous Cell Carcinomas of the Head and Neck, Byull. Sib. Div. Russ. Acad. Med. Sci., 2005, vol. 116, pp. 82–91.

    Google Scholar 

  11. Laemmli, U.K., Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680–683.

    PubMed  Article  CAS  Google Scholar 

  12. Lai, C.F., Seshadri, V., Huang, K., Shao, J.S., Cai, J., Vattikuti, R., Schumacher, A., Loewy, A.P., Denhardt, D.T., Rittling, S.R., and Towler, D.A., An Osteopontin-NADPH Oxidase Signaling Cascade Promotes Pro-Matrix Metalloproteinase 9 Activation in Aortic Mesenchymal Cells, Circ. Res., 2006, vol. 98, pp. 1479–1489.

    PubMed  Article  CAS  Google Scholar 

  13. Moini, H., Packer, L., and Saris, N.E., Antioxidant and Prooxidant Activities of Alpha-Lipoic Acid and Dihydrolipoic Acid, Toxicol. Appl. Pharmacol., 2002, vol. 182, pp. 84–90.

    PubMed  Article  CAS  Google Scholar 

  14. Mott, J.D. and Werb, Z., Regulation of Matrix Biology by Matrix Metalloproteinases, Cur. Opinion Cell Biol., 2004, vol. 16, pp. 558–564.

    Article  CAS  Google Scholar 

  15. Okamoto, T., Akaike, T., Sawa, T., Miyamoto, Y., van der Vliet, A., and Maeda, H., Activation of Matrix Metalloproteinases by Peroxynitrite-Induced Protein S-Glutathiolation via Disulfide S-Oxide Formation, Biol. Chem., 2001, vol. 27, pp. 29596–29602.

    Google Scholar 

  16. Oliver, G.W., Stettler-Stevenson, W.G., and Kleiner, D.E., Zymography, Casein Zymography and Reverse Zymography: Activity Assays for Proteases and Their Inhibitors, in Handbook of Proteolyitic Enzymes, San Diego: Academic, 1999, pp. 61–76.

    Google Scholar 

  17. Packer, L., Witt, E.H., and Tritschler, H.J., Alpha-Lipoic Acid as a Biological Antioxidant, Free Radic Biol.Med., 1995, vol 19, pp. 227–250.

    PubMed  Article  CAS  Google Scholar 

  18. Pei, P., Horan, M.P., Hille, R., Hemann, C.F., Schwendeman, S.P., and Mallery, S.R., Reduced Nonprotein Thiols Inhibit Activation and Function of MMP-9: Implications for Chemoprevention, Free Rad. Biol. Med., 2006, vol. 41, pp. 1315–1324.

    PubMed  Article  CAS  Google Scholar 

  19. Schnaeker, E.-M., Ossig, R., Ludwig, T., Dreier, R., Oberleithner, H., Wilhelmi, M., and Schneider, S.W., Microtubule-Dependent Matrix Metalloproteinase-2/Matrix Metalloproteinase-9 Exocytosis: Prerequisite in Human Melanoma Cell Invasion. Cancer Res., 2004, 64, pp. 8924–8931.

    PubMed  Article  CAS  Google Scholar 

  20. Sen, C.K. and Packer, L., Thiol Homeostasis and Supplements in Physical Exercise, Am. J. Clin. Nutr., 2000, vol. 72, no. 2, Suppl., pp. 653S–669S.

    PubMed  CAS  Google Scholar 

  21. Spingman, E.B., Angleton, E.L., Birkedal-Hansen, H., and Van Wart, H.E., Multiple Modes of Activation of Latent Human Fibroblast Collagenase: Evidence for the Role of a Cys73 Active-Site Zinc Complex in Latency and a “Cysteine Switch” Mechanism for Activation, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 364–368.

    Article  Google Scholar 

  22. Spolarics, Z. and Wu, J.X., Role of Glutathione and Catalase in H2O2 Detoxification in LPS-Activated Hepatic Endothelial and Kupffer Cells, Am. J. Physiol., 1997, vol. 273, pp. G1304–G1311.

    PubMed  CAS  Google Scholar 

  23. Van Wart, H.E. and Birkedal-Hansen, H., The Cysteine Switch: a Principle of Regulation of Metalloproteinase Activity with Potential Applicability to the Entire Matrix Metalloproteinase Gene Family, Proc.Natl.Acad. Sci. USA, 1990, vol. 87, pp. 5578–5582.

    PubMed  Article  Google Scholar 

  24. Voronkina, I.V., Kharisov, A.M., Blinova, M.I., Paramonov, B.A., Potokin, I.L., and Pinaev, G.P., The “Air Pouch” Model in Mice and a Study of the Wound Fluid Proteolytic Activity, Tsitologiia, 2002, vol. 44, no. 3, pp. 270–276.

    PubMed  CAS  Google Scholar 

  25. Weiss, A., Goldman, S., Ben Shlomo, I., Eyali, V., Leibovitz, S., and Shalev, E., Mechanisms of Matrix Metalloproteinase-9 and Matrix Metalloproteinase-2 Inhibition by NAcetylcysteine in the Human Term Decidua and Fetal Membranes, Am. J. Obstet. Gynecol. 2003, vol. 189, pp. 1758–1763.

    PubMed  Article  CAS  Google Scholar 

  26. Westermarck, J. and Kahari, V., Regulation of Matrix Metalloproteinase Expression in Tumor Invasion, FASEB J., 1999, vol. 13, pp. 781–792.

    PubMed  CAS  Google Scholar 

  27. Zafarullah, M., Li, W.Q., Sylvester, J., and Ahmad, M., Molecular Mechanisms of N-Acetylcysteine Actions, CMLS Cell Mol. Life Sci., 2003, vol. 60, pp. 6–20.

    Article  CAS  Google Scholar 

  28. Zhang, H.S. and Wang, S.Q., Salvianolic Acid B from Salvia miltiorrhiza Inhibits Tumor Necrosis Factor-Alpha (TNF-alpha)-Induced MMP-2 Upregulation in Human Aortic Smooth Muscle Cells via Suppression of NAD(P)H Oxidase-Derived Reactive Oxygen Species, J. Mol. Cell Cardiol., 2006, vol. 41, pp. 138–148.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Gamaley.

Additional information

Original Russian Text © I.V. Voronkina, K.M. Kirpichnikova, L.V. Smagina, I.A. Gamaley, 2008, published in Tsitologiya, Vol. 50, No. 12, 2008, pp. 877–881.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Voronkina, I.V., Kirpichnikova, K.M., Smagina, L.V. et al. Activity of matrix metalloproteinases in normal and transformed mouse fibroblasts exposed to antioxidants. Cell Tiss. Biol. 3, 56–60 (2009). https://doi.org/10.1134/S1990519X09010088

Download citation

Key words

  • transformed fibroblasts
  • matrix metalloproteinases
  • N-acetylcystein
  • alpha-lipoic acid