Skip to main content
Log in

Microtubule system in endothelial barrier dysfunction: Disassembly of peripheral microtubules and microtubule reorganization in internal cytoplasm

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Endothelial cell barrier dysfunction is associated with dramatic cytoskeletal reorganization, the activation of actomyosin contraction, and, finally, gap formation. Although the role of microtubules in the regulation of endothelial cell barrier function is not fully understood, a number of observations allow for the assumption that the reaction of the microtubule is an extremely important part in the development of endothelial dysfunction. These observations have forced us to examine the role of microtubule reorganization in the regulation of the endothelial cell barrier function. In quiescent endothelial cells, microtubule density is the highest in the centrosome region; however, microtubules are also present near the cell margin. The analysis of microtubule distribution after specific antibody staining using the method of measurement of their fluorescence intensity showed that, in control endothelial cells, the reduction of fluorescence intensity from the cell center to its periphery is described by the equation of exponential regression. The edemagenic agent, thrombin (25 nM), caused the rapid increase of endothelial cell barrier permeability accompanied by a fast decrease in quantity of the peripheral microtubules and reorganization of the microtubule system in the internal cytoplasm of endothelial cells (the decrease of fluorescence intensity is described by the equation of linear regress within as little as 5 min after the beginning of treatment). Both effects are reversible; within 60 min after the beginning of treatment, the microtubule network does not differ from the standard one. Thus, the microtubule system is capable of adapting to the influence of a natural regulator, thrombin. The reorganization of microtubules develops more quickly than the reorganization of the actin filaments system responsible for the subsequent changes of the cell shape during barrier dysfunction. Apparently, the microtubules are the first part in the circuit of the reactions leading to the pulmonary endothelial cell barrier compromise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bershadsky, A.D., Ballestrem, C., Carramusa, L., Zilberman, Y., Gilquin, B., Khochbin, S., Alexandrova, A.Y, Verkhovsky, A.B., Shemesh, T., and Kozlov, M.M., Assembly and Mechanosensory Function of Focal Adhesions: Experiments and Models, Eur. J. Cell Biol., 2006, vol. 85, pp. 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Birukova, A., Birukov, K., Smurova, K., Kaibuchi, K., Alieva, I., Garcia, J.G., and Verin A., Novel Role of Microtubules in Thrombin-induced Endothelial Barrier Dysfunction, FASEB J., 2004a, vol.18, pp.1879–1890.

    Article  PubMed  CAS  Google Scholar 

  • Birukova, A.A., Smurova, K.M., Birukov, K.G., Kaibuchi, K., Garcia, J.G., and Verin A.D., Role of Rho GTPases in Thrombin-induced Lung Vascular Endothelial Cells Barrier Dysfunction, Microvasc. Res., 2004b, vol. 67, pp. 64–77.

    Article  PubMed  CAS  Google Scholar 

  • Birukova, A., Smurova, K., Birukov, K., Usatyuk, P., Liu, F., Kaibuchi, K., Ricks-Cord, A., Natarajan, V., Alieva, I., Garcia, J.G., and Verin, A., Microtubule Disassembly Induces Cytoskeletal Remodeling and Vascular Barrier Dysfunction: Role of Rho-dependent Mechanisms, J. Cell Physiol., 2004c, vol. 201, pp. 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Bogatcheva, N.V., Garcia, J.G.N., and Verin, A.D., Molecular Mechanisms of Thrombin-induced Endothelial Cell Permeability, Biochemistry (Mosc.), 2002, vol. 67, pp. 75–84.

    Article  CAS  Google Scholar 

  • Cattan, C.E. and Oberg, K.C., Vinorelbine Tartrate-induced Pulmonary Edema Confirmed on Rechallenge, Pharmacotherapy, 1999, vol.19, pp. 992–994.

    Article  PubMed  CAS  Google Scholar 

  • Cook, T. A., Nagasaki, T., and Gundersen, G. G., Rho Guanosine Triphosphatase Mediates the Selective Stabilization of Microtubules Induced by Lysophosphatidic acid, J. Cell Biol., 1998, vol. 141, pp. 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Danowski, B.A., Fibroblast Contractility and Actin Organization are Stimulated by Microtubule Inhibitors, J. Cell Sci., 1989, vol. 93, pp. 255–266.

    PubMed  CAS  Google Scholar 

  • Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A., and Hall, A., Rac/Cdc42 and p65PAK Regulate the Microtubule-destabilizing Protein Stathmin through Phosphorylation at Serine 16, J. Biol. Chem., 2001, vol. 276, pp. 1677–1680.

    Article  PubMed  CAS  Google Scholar 

  • Dudek, S.M. and Garcia, J.G., Cyloskeletal Regulation of Pulmonary Vascular Permeability, J. Appl. Physiol., 2001, vol. 91, pp. 1487–1500.

    PubMed  CAS  Google Scholar 

  • Elbaum, M., Chausovsky, A., Levy, E.T., Shtutman, M., and Bershadsky, A.D., Microtubule Involvement in Regulating Cell Contractility and Adhesion-dependent Signaling: A Possible Mechanism for Polarization of Cell Motility, Biochem. Soc. Symp., 1999, vol. 65, pp. 147–172.

    PubMed  CAS  Google Scholar 

  • Fuchs, E. and Karakesisoglou, I., Bridging Cytoskeletal Intersections, Genes Dev., 2001, vol. 15, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi K., Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170, Cell, 2002, vol. 109, pp. 873–885.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J.G., Davis, H.W., and Patterson, C.E, Regulation of Endothelial Cell Gap Formation and Barrier Dysfunction: Role of Myosin Light Chain Phosphorylation, J. Cell. Physiol., 1995, vol. 163, pp. 510–522.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J.G., Verin, A.D., and Schaphorst, K.L., Regulation of Thrombin-mediated Endothelial Cell Contraction and Permeability, Semin. Thromb. Hemostasis, 1996, vol. 22, pp. 309–315.

    Article  CAS  Google Scholar 

  • Groeneveld, A.B., Vascular Pharmacology of Acute Lung Injury and Acute Respiratory Distress Syndrome, Vascul. Pharmacol., 2002, vol. 39, pp. 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D.E., Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology, Circ. Res., 2002, vol. 91, pp. 877–887.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki, T., Morishima, Y., Okamoto, M., Furuyashiki, T., Kato, T., and Narumiya S., Coordination of Microtubules and the Actin Cytoskeleton by the Rho Effector mDia1, Nat. Cell Biol., 2001, vol. 3, pp. 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, A.B. and Hall, A., Rho GTPases: Biochemistry and Biology, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 247–269.

    Article  PubMed  CAS  Google Scholar 

  • Kaverina, I., Krylyshkina, O., and Small, J.V., Microtubule Targeting of Substrate Contacts Promotes Their Relaxation and Dissociation, J. Cell Biol., 1999, vol.146, pp. 1033–1044.

    Article  PubMed  CAS  Google Scholar 

  • Kaverina, I., Krylyshkina, O., and Small, J.V., Regulation of Substrate Adhesion Dynamics during Cell Motility, Int. J. Biochem. Cell Biol., 2002, vol. 34, pp. 746–761.

    Article  PubMed  CAS  Google Scholar 

  • Lum, H. and Malik, A.B., Mechanisms of Increased Endothelial Permeability, Can. J. Physiol. Phannacol., 1996, vol. 74, pp. 787–800.

    Article  CAS  Google Scholar 

  • Palazzo, A.F., Cook, T.A., Alberts, A.S., and Gundersen, G.G., mDia Mediates Rho-regulated Formation and Orientation of Stable Microtubules, Nat. Cell Biol., 2001, vol. 3, pp. 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Ridley, A.J., Rho Family Proteins: Coordinating Cell Responses, Trends Cell Biol., 2001, vol. 11, pp. 471–477.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., and Waterman-Storer, C.M., Conserved Microtubule-actin Interactions in Cell Movement and Morphogenesis, Nat. Cell Biol., 2003, vol. 5, pp. 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Sahai, E. and Marshall, C.J., ROCK and Dia Have Opposing Effects on Adherens Junctions Downstream of Rho, Nat. Cell Biol., 2002, vol. 4, pp. 408–415.

    Article  PubMed  CAS  Google Scholar 

  • Small, J.V. and Kaverina, I., Microtubules Meet Substrate Adhesions to Arrange Cell Polarity, Curr. Opin. Cell Biol., 2003, vol.15, pp. 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Small, J.V., Geiger, B., Kaverina, I., and Bershadsky, A.D., How Do Microtubules Guide Migrating Cells?, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 957–964.

    Article  PubMed  CAS  Google Scholar 

  • Small, J.V., Kaverina, I., Krylyshkina, O., and Rottner, K., Cytoskeleton Cross-talk during Cell Motility, FEBS Lett., 1999, vol. 452, pp. 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Smurova, K.M., Alieva, I.B., and Vorobjiev, I.A., Dynamics of Microtubule Recovery after Their Nocodozole Destruction in Cultured Vero Cells, Biol. Membr., 2002, vol. 19, pp. 472–482.

    CAS  Google Scholar 

  • Smurova, K.M., Birukova, A.A., Garcia, G. Vorobjiev, I.A., Alieva, I.B., and Verin, A.D. Reorganization of Microtubules in Epithelium Lung Cells Treated with Thrombin, Tsitologiia, 2004, vol. 46, pp. 695–703.

    PubMed  CAS  Google Scholar 

  • Smurova, K.M., Alieva, I.B., and Vorobjiev, I.A., Free and Centrosome-binded Microtubules: Quantitative Analysis and Modelling of Two-component System, Tsitologiia, 2007, vol. 49, pp. 270–279.

    PubMed  CAS  Google Scholar 

  • van Nieuw Amerongen, G.P., van Delft, S., Vermeer, M.A., Collard, J.G., and van Hinsbergh, V.W., Activation of RhoA by Thrombin in Endothelial Hyperpermeability: Role of Rho Kinase and Protein Tyrosine Kinases, Circ. Res., 2000, vol. 87, pp. 335–340.

    PubMed  Google Scholar 

  • Verin, A.D., Birukova, A., Wang, P., Liu, F., Becker, P., Birukov, K., and Garcia, J.G., Microtubule Disassembly Increases Endothelial Cell Barrier Dysfunction: Role of MLC Phosphorylation, Am. J. Physiol., 2001, vol. 281, pp. 565–574.

    Google Scholar 

  • Villalonga, P. and Ridley, A.J., Rho GTPases and Cell Cycle Control, Growth Factors, 2006, vol. 24, pp. 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Wallar, B.J. and Alberts, A.S., The Formins: Active Scaffolds that Remodel the Cytoskeleton, Trends Cell Biol., 2003, vol. 13, pp. 435–446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Alieva.

Additional information

Original Russian Text © K.M. Smurova, A.A. Birukova, A.D. Verin, I.B. Alieva, 2008, published in Tsitologiya, Vol. 50, No. 1, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smurova, K.M., Birukova, A.A., Verin, A.D. et al. Microtubule system in endothelial barrier dysfunction: Disassembly of peripheral microtubules and microtubule reorganization in internal cytoplasm. Cell Tiss. Biol. 2, 45–52 (2008). https://doi.org/10.1134/S1990519X08010070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X08010070

Key words

Navigation