Skip to main content
Log in

Disturbance of transduction of adenylyl cyclase-inhibiting hormonal signaling in the myocardium and brain of rats with experimental type 2 diabetes

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Presently, our work, as well as that of other authors, has produced convincing evidence in favor of the idea that disturbances in hormonal signaling systems are one of the main causes of the development of pathological alterations and complications in diabetes. However, the molecular mechanisms underlying these disturbances remain practically unstudied, particularly in insulin-independent type 2 diabetes. Using a neonatal streptozotocin model of type 2 diabetes, whose duration was either 80 or 180 days, we studied changes in the functional activity of components of the hormone-regulated adenylyl cyclase (AC) signaling system in the myocardium and brain striatum of diabetic rats as compared with control animals. In diabetes, the Gi-realized process of transduction of the hormonal signal inhibiting AC activity has been shown to be markedly impaired. This is manifested as a decrease of the inhibitory effect of hormones on AC activity and an attenuation of their stimulation of the G-protein’s GTP-binding activity. In the case of noradrenaline (myocardium), the inhibitory pathway of the AC system regulation is completely suppressed, while the stimulatory pathway is preserved. An increase in the duration of diabetes development from 80 to 180 days leads to some decrease in the transduction of hormonal signals realized via Gi-proteins. The stimulatory effects of biogenic amines and relaxin on AC activity and GTP binding in the myocardium and brain of diabetic rats change relatively little, both in the 80-and in the 180-day diabetes. Thus, in the experimental type 2 diabetes, disturbances in Gi-protein coupled signal cascades are primarily observed, through which hormones realize their inhibition of AC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

adrenergic receptor

AC:

adenylyl cyclase

AC:

system-adenylyl cyclase signaling system

STZ:

streptozotocin

Gs-and Gi-proteins:

heterotrimeric G-proteins of the stimulatory and inhibitory type

References

  1. Begin-Heick, N., Liver β-Adrenergic Receptors, G Proteins, and Adenylyl Cyclase Activity in Obesity-diabetes Syndromes, Am. J. Physiol., 1994, vol. 266, pp. 1664–1672.

    Google Scholar 

  2. Breitweg-Lehmann, E., Czupalla, C., Storm, R., Kudlacek, O., Schunack, W., Freissmuth, M., and Nurnberg, B, Activation and Inhibition of G Protein by Lipoamines, Mol. Pharmacol., 2002, vol. 61, pp. 628–636.

    Article  PubMed  CAS  Google Scholar 

  3. Bushfield, M., Griffiths, S.L., Murphy, G.J., Pyne, N.J., Knowler, J.T., Milligan, G., Parker, P.J., Mollner, S., and Houslay, M.D. Diabetes-induced Alterations in the Expression, Functioning and Phosphorylation State of the Inhibitory Guanine Nucleotide Regulatory Protein Giα-2 in hepatocytes, Biochem. J., 1990, vol. 271, pp. 365–372.

    PubMed  CAS  Google Scholar 

  4. Caro, J.F., Raju, M.S., Caro, M., Lynch, C.J., Poulos, J., Exton, J.H., and Thakkar, J.K., Guanine Nucleotide Binding Proteins in Liver from Obese Humans with and without Type II Diabetes: Evidence for Altered “Crosstalk” between the Insulin Receptor and Gi proteins, J. Cell. Biochem., 1994, vol. 54, pp. 309–319.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, J.F., Guo, J.H., Moxham, C.M., Wang, H.Y., and Malbon, C.C., Conditional, Tissue-specific Expression of Q205L Gαi2 in vivo Mimics Insulin Action, J. Mol. Med., 1997, vol. 75, pp. 283–289.

    Article  PubMed  CAS  Google Scholar 

  6. Dincer, D.U., Bidasee, K.R., Guner, S., Tay, A., Ozcelikay, T., and Altan, V.M. The Effect of Diabetes on Expression of β1-, β2-and β3-Adrenoreceptors in Rat Hearts, Diabetes, 2001, vol. 50, pp. 455–461.

    Article  PubMed  CAS  Google Scholar 

  7. Fernandez-Real, J.M., Penarroja, G., Richart, C., Castro, A., Vendrell, J., Broch, M., Lopez-Bermejo, A., and Ricart, W., G Protein β3 Gene Variant, Vascular Function, and Insulin Sensitivity in Type 2 Diabetes, Hypertension, 2003, vol. 41, pp. 124–129.

    Article  PubMed  CAS  Google Scholar 

  8. Gando, S., Hattori, Y., Akaishi, Y., Nishihira, J., and Kanno, M., Impaired Contractile Response to Beta Adrenoreceptor Stimulation in Diabetic Rat Hearts: Alterations in Beta Adrenoreceptors-G protein-adenylate Cyclase System and Phospholamban Phosphorylation, J. Pharmacol. Exp. Ther., 1997, vol. 282, pp. 475–484.

    PubMed  CAS  Google Scholar 

  9. Gauthier, C., Tavernier, G., Charpentier, F., Langin, D., Le Marec, H., Functional β3-AR in the Human Heart, J. Clin. Invest., 1996, vol. 98, pp. 556–562.

    Article  PubMed  CAS  Google Scholar 

  10. Gawler, D., Milligan, G., Spiegel, A.M., Unson, C.H., and Houslay, M.D., Abolition of the Expression of the Inhibitory Guanine Nucleotide Regulatory Protein Gi Activity in Diabetes, Nature, 1987, vol. 327, pp. 229–232.

    Article  PubMed  CAS  Google Scholar 

  11. Hadjiconstantinou, M., Qu, Z.K., Moroi-Fetters, S.E., and Neff, N.H., Apparent Loss of Gi Protein Activity in the Diabetic Retina, Eur. J. Pharmacol., 1988, vol. 149, pp. 193–194.

    Article  PubMed  CAS  Google Scholar 

  12. Hajos, F., An Improved Method for the Preparation of Synaptosomal Fractions in High Purity, Brain Res., 1975, vol. 93, pp. 485–489.

    Article  PubMed  CAS  Google Scholar 

  13. Hashim, S., Li, Y., and Anand-Srivastava, M.B., G-Protein-linked Cell Signaling and Cardiovascular Functions in Diabetes/Hyperglycemia, Cell. Biochem. Biophys., 2006, vol. 44, pp. 51–64.

    Article  PubMed  CAS  Google Scholar 

  14. Hashim, S., Li, Y., Nagakura, A., Takeo, S., and Anand-Srivastava, M.B., Modulation of G-Protein Expression and Adenylyl Cyclase Signaling by High Glucose in Vascular Smooth Muscle, Cardiovasc. Res., 2004, vol. 63, pp. 709–718.

    Article  PubMed  CAS  Google Scholar 

  15. Hashim, S., Li, Y.Y., Wang, R., and Anand-Srivastava, M.B., Streptozotocin-induced Diabetes Impairs G-Protein Linked Signal Transduction in Vascular Smooth Muscle, Mol. Cell. Biochem., 2002, vol. 240, pp. 57–65.

    Article  PubMed  CAS  Google Scholar 

  16. Hattori, Y., Matsuda, N., Sato, A., Watanuki, S., Tomioka, H., Kawasaki, H., and Kanno, M., Predominant Contribution of the G Protein-mediated Mechanism to NaF-induced Vascular Contractions in Diabetic Rats: Association with an Increased Level of Expression, J. Pharmacol. Exp. Ther., 2000, vol. 292, pp. 761–768.

    PubMed  CAS  Google Scholar 

  17. Hemmings, S.J. and Spafford, D., Neonatal STZ Model of Type II Diabetes Mellitus in the Fischer 344 Rat: Characteristics and Assessment of the Status of the Hepatic Adrenergic Receptors, Int. J. Biochem. Cell Biol., 2000, vol. 32, pp. 905–919.

    Article  PubMed  CAS  Google Scholar 

  18. Higashijima, T., Burnier, J., and Ross, E.M., Regulation of Gi and Go by Mastoparan, Related Amphiphilic Peptides and Hydrophobic Amines, J. Biol. Chem., 1990, vol. 265, pp. 14176–14186.

    PubMed  CAS  Google Scholar 

  19. Kidwai, A.M., Radcliffe, A.M., Lee, E.V., and Daniel, E.E., Isolation and Properties of Skeletal Muscle Membrane, Biochim. Biophys. Acta, 1973, vol. 289, pp. 593–607.

    Google Scholar 

  20. Kowluru, A., Kowluru, R.A., and Yamaraki, A., Functional Alterations of G-Proteins in Diabetic Rat Retina: a Possible Explanation for the Early Visual Abnormalities in Diabetes Mellitus, Diabetologia, 1992, vol. 35, pp. 624–631.

    Article  PubMed  CAS  Google Scholar 

  21. Kuznetsova, L., Plesneva, S., Shpakov, A., and Pertseva, M., Functional Defects in Insulin and Relaxin Adenylyl Cyclase Signaling Systems in Myometrium of Pregnant Women with Type 1 Diabetes, Ann. N.Y. Acad. Sci., 2005, vol. 1041, pp. 446–448.

    Article  PubMed  CAS  Google Scholar 

  22. Livingstone, C., McLellan, A.R., McGregor, M., Wilson, A., Connell, J.M.C., Small, M., Milligan, G., Paterson, K.R., and Houslay, M.D., Altered G-Protein Expression and Adenylate Cyclase Activity in Platelets of Non-insulin-dependent (NIDDM) Male Subjects, Biochim. Biophys. Acta, 1991, vol. 1096, pp. 127–133.

    PubMed  CAS  Google Scholar 

  23. Malbon, C.C., Insulin Signalling: Putting the “G-” in Protein-protein Interactions, Biochem. J., 2004, vol. 380, pp. 11–12.

    Article  Google Scholar 

  24. Matsuda, N., Hattori, Y., Gando, S., Akaishi, Y., Kemnotsu, O., and Kanno, M., Diabetes-induced Downregulation of β1-AR mRNA Expression in Rat Heart. Biochem. Pharmacol., 1999, vol. 58, pp. 881–885.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumoto, T., Wakabayashi, K., Kobayashi, T., and Kamata, K., Functional Changes in Adenylyl Cyclases and Associated Decreases in Relaxation Response in Mesenteric Arteries from Diabetic Rats, Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 89, pp. 2234–2243.

    Article  CAS  Google Scholar 

  26. McIntire, W.E., MacCleery, G., and Garrison, J.C., The G Protein (Subunit Is a Determinant in the Coupling of Gs to the β1-Adrenergic and A2a Adenosine Receptors, J. Biol. Chem., 2001, vol. 276, pp. 15801–15809.

    Article  PubMed  CAS  Google Scholar 

  27. Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G., Dopamine Receptors: from Structure to Function, Physiol. Rev., 1998, vol. 78, pp. 189–225.

    PubMed  CAS  Google Scholar 

  28. Moxham, C.M., and Malbon, C.C., Insulin Action Impaired by Deficiency of the G-Protein Subunit Giα2, Nature, 1996, vol. 379, pp. 840–844.

    Article  PubMed  CAS  Google Scholar 

  29. Nielsen, M.D., Chan, G.C.K., Poser, S.W., and Storm, D.R., Differential Regulation of Type I and Type VIII Ca{sr2+}-stimulated Adenylyl Cyclases by Gi-coupled Receptors in vivo, J. Biol. Chem., 1996, vol. 271, pp. 33308–33316.

    Article  PubMed  CAS  Google Scholar 

  30. Palmer, T.M., Taberner, P.V., and Houslay M.D., Alterations in G-protein Expression, Gi Function and Stimulatory Receptor-mediated Regulation of Adipocyte Adenylyl Cyclase in a Model of Insulin-resistant Diabetes with Obesity, Cell. Signall., 1992, vol. 4, pp. 365–377.

    Article  CAS  Google Scholar 

  31. Panchenko, M.P., Hoffenberg, S.I., and Tkachuk, V.A., Purification and Some Properties of GTP-binding Proteins from Pig Heart Plasma Membranes, Biochim. Biophys. Acta, 1987, vol. 46, pp. 452–455.

    Google Scholar 

  32. Plesneva, S.A., Shpakov, A.O., Kuznetsova, L.A., and Pertseva, M.N., A Dual Role of Protein Kinase C in Insulin Signal Transduction via Adenylyl Cyclase Signaling System in Muscle Tissues of Vertebrates and Invertebrates, Biochem. Pharmacol., 2001, vol. 61, pp. 1277–1291.

    Article  PubMed  CAS  Google Scholar 

  33. Richardson, M.R., Kilts, J.D., and Kwatra, M.M., Increased Expression of Gi Coupled Muscarinic Acetylcholine Receptor and Gi in Atrium of Elderly Diabetic Subjects, Diabetes, 2004, vol. 53, pp. 2392–2396.

    Article  PubMed  CAS  Google Scholar 

  34. Salomon, Y., Londos, C., and Rodbell, M.A., Highly Sensitive Adenylate Cyclase Assay, Anal. Biochem., 1974, vol. 58, pp. 541–548.

    Article  PubMed  CAS  Google Scholar 

  35. Schreff, M., Schulz, S., Handel, M., Keilhoff, G., Braun, H., Pereira, G., Klutzny, M., Schmidt, H., Wolf, G., and Hollt, V., Distribution, Targeting, and Internalization of the sst4 Somatostatin Receptor in Rat Brain, J. Neurosci., 2000, vol. 20, pp. 3785–3797.

    PubMed  CAS  Google Scholar 

  36. Shpakov, A.O., Gur’yanov, I.A., Kuznetsova, L.A., Plesneva, S.A., Korol’kov, B.I., Pertseva, M.N., and Vlasov, G.P., Use of C-Terminal Peptides of G-Protein α-Subunuts for Study of Their Functional Coupling to Biogenic Amine Receptors in Rat and Mollusc Tissues, Biol. Membrany, 2004, vol. 21, no. 6, pp. 441–450.

    Google Scholar 

  37. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Molecular Mechanisms of Change of Sensitivity of Adenylyl Cyclase Signal System to Biogenic Amines in Streptozotocin Diabetes, Byull. Exp. Biol. Med., 2005a, vol. 140, no. 9, pp. 286–290.

    Google Scholar 

  38. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Gur’yanov, I.A., and Pertseva, M.N., Molecular Causes of Change of Sensitivity of the Cardiac Muscle Adenylyl Cyclase Signal System to Biogenic Amines in Experimental Streptozotocin Diabetes, Tsitologya, 2005b, vol. 47, no. 6, pp. 540–548.

    CAS  Google Scholar 

  39. Shpakov, A.O., and Pertseva, M.N., Molecular Mechanisms of Action of Mastoparan on G-Proteins in Tissues of Vertebrae and Invertebrate Animals, Byull. Exp. Biol. Med., 2006, vol. 141, no. 3, pp. 273–277.

    Google Scholar 

  40. Song, X., Zheng, X., Malbon, C.C., and Wang, H.. Gαi2 Enhances in vivo Activation of and Insulin Signaling to GLUT4, J. Biol. Chem., 2001, vol. 276, pp. 34651–34658.

    Article  PubMed  CAS  Google Scholar 

  41. Wichelhaus, A., Russ, M., Petersen, S., and Eckel, J.G., Protein Expression and Adenylate Cyclase Regulation in Ventricular Cardiomyocytes from STZ-diabetic Rats, Am. J. Physiol., 1994, vol. 267, pp. 548-555.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © A.O. Shpakov, L.A. Kuznetsova, S.A. Plesneva, M.N. Pertseva, 2007, published in Tsitologiya, Vol. 49, No. 4, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A. et al. Disturbance of transduction of adenylyl cyclase-inhibiting hormonal signaling in the myocardium and brain of rats with experimental type 2 diabetes. Cell Tiss. Biol. 1, 343–351 (2007). https://doi.org/10.1134/S1990519X07040062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X07040062

Key words

Navigation