Skip to main content
Log in

Prooxidant and cytotoxic action of N-acetylcysteine and glutathione in combinations with vitamin B12b

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Prooxidant and cytotoxic effects of thiols N-acetylcysteine (NAC) and glutathione (GSH) were studied in combinations with vitamin B12b. Both GSH and NAC at physiological doses when combined with B12b were shown to cause initiation of apoptosis. It was established that the prooxidant action of NAC (or GSH) combined with B12b, i.e., generation and accumulation of hydrogen peroxide in culture medium, led to intractellular oxidative stress and cell redox imbalance. These effects are completely prevented by nonthiol antioxidants catalase and pyruvate. The chelators of iron phenanthroline and deferoxamine do not suppress the H2O2 accumulation in culture medium, but inhibit cell death induced by NAC combined with B12b or by GSH combined with B12b. Therefore, the thiols GSH or NAC in combination with vitamin B12b reveal prooxidant properties and induce, with participation of intracellular iron, apoptotic HEp-2 cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

H2DCFDA:

2′,7′-dichlorofluorescein diacetate

DFO:

deferoxamine mesylate

GSH:

reduced glutathione

NAC:

N-acetylcysteine

PTL:

phenantroline

References

  1. Akatov, V.S., Evtodienko, Y.V., Leshchenko, V.V., et al., Combined Vitamins B12b and C Induce the Glutathione Depletion and the Death of Epidermoid Human Larynx Carcinoma Cells HEp-2, Biosci. Rep., 2000a, vol. 20, pp. 411–417.

    Article  PubMed  CAS  Google Scholar 

  2. Akatov, V.S., Evtodienko, Y.V., Medvedev, A.I., et al., DNA Damage and Tumor Cell Death due to Combined Vitamins B12b and C Action, Dokl. Akad. Nauk, 2000b, vol. 373, no. 6, pp. 838–840.

    CAS  Google Scholar 

  3. Barbouti, A., Doulias, P., Zhu, B., et al., Intracellular Iron, but not Copper, Plays a Critical Role in Hydrogen Peroxide-induced DNA Damage, Free Radic. Biol. Med., 2001, vol. 31, pp. 490–498.

    Article  PubMed  CAS  Google Scholar 

  4. Bobyrev, V.N., Pochernyaeva, V.F., Starodubtsev, S.G., et al., Specificity of Systems of Antioxidant Protection of Organs and Tissues as a Basis for the Differentiated Pharmacotherapy by Antioxidants, Eksper. Klin. Farmakol., 1994, vol. 57, no. 1, pp. 47–54.

    CAS  Google Scholar 

  5. Borisenko, G.G., Martin, I., Zhao, Q., et al., Glutathione Propagates Oxidative Stress Triggered by Myeloperoxidase in HL-60 Cells. Evidence for Glutathionyl Radical-induced Peroxidation of Phospholipids and Cytotoxicity, J. Biol. Chem., 2004, vol. 279, pp. 23453–23462.

    Article  PubMed  CAS  Google Scholar 

  6. Brazzolotto, X., Gaillard, J., Pantopoulos, K., et al., Human Cytoplasmic Aconitase (Iron Regulatory Protein 1) Is Converted into Its [3Fe-4S] Form by Hydrogen Peroxide in vitro but Is Not Activated for Iron-responsive Element Binding, J. Biol. Chem., 1999, vol. 274, pp. 21625–21630.

    Article  PubMed  CAS  Google Scholar 

  7. Buettner, G.R., and Jurkiewicz, B.A., Catalytic Metals, Ascorbate and Free Radicals: Combinations to Avoid, Radiat. Res., 1996, vol. 145, pp. 532–541.

    Article  PubMed  CAS  Google Scholar 

  8. Byrnes, R. W., Evidence for Involvement of Multiple Iron Species in DNA Single-strand Scission by H2O2 in HL-60 Cells, Free Rad. Biol. Med., 1996, vol. 20, pp. 399–406.

    Article  PubMed  CAS  Google Scholar 

  9. Dharmarajan, T.S., and Norkus, E.P., Approaches to Vitamin B12 Deficiency. Early Treatment May Prevent Devastating Complications, Postgrad. Medic., 2001, vol. 110, pp. 99–105.

    CAS  Google Scholar 

  10. Chan, E.D., Riches, D.W., and White, C.W., Redox Paradox: Effect of N-Acetylcysteine and Serum on Oxidation Reduction-sensitive Mitogen-activated Protein Kinase Signaling Pathways, Am. J. Respir. Cell. Mol. Biol., 2001, vol. 24, pp. 627–632.

    PubMed  CAS  Google Scholar 

  11. Cohen, J.J., Apoptosis, Immunol. Today, 1993, vol. 14, pp. 126–130.

    Article  PubMed  CAS  Google Scholar 

  12. Farombi, E.O., Moller, P., and Dragsted, L.O., Ex-vivo and in vitro Protective Effects of Kolaviron against Oxygen-derived Radical-induced DNA Damage and Oxidative Stress in Human Lymphocytes and Rat Liver Cells, Cell Biol. Toxicol., 2004, vol. 20, pp. 71–82.

    Article  PubMed  Google Scholar 

  13. Halliwell, B., and Gutteridge, J.M.C., Oxygen Free Radicals and an Iron in Relation to Biology and Medicine: Some Problems and Concepts, Arch. Biochem. Biophys., 1986, vol. 246, pp. 501–514.

    Article  PubMed  CAS  Google Scholar 

  14. Held, K.D., and Biaglow, J.E., Mechanisms for the Oxygen Radical-mediated Toxicity of Various Thiol-containing Compounds in Cultured Mammalian Cells, Radiat. Res., 1994, vol. 139, pp. 15–23.

    Article  PubMed  CAS  Google Scholar 

  15. Held, K.D., Sylvester, F.C., Hopcia, K.L., and Biaglow, J.E., Role of Fenton Chemistry in Thiol-induced Toxicity and Apoptosis, Radiat. Res., 1996, vol. 145, pp. 542–553.

    Article  PubMed  CAS  Google Scholar 

  16. Jeitner, T.M., Delikatny, E.J., Bartier, W.A., et al., Inhibition of Drug-naive and-Resistant Leukemia Cell Proliferation by Low Molecular Weight Thiols. Biochem. Pharmacol., 1998, vol. 55, pp. 793–802.

    Article  PubMed  CAS  Google Scholar 

  17. Kimoto, E., Tanaka, H., Gyotoku, J., et al., Enhancement of Antitumor Activity of Ascorbate against Ehrlich Ascites Tumor Cells by the Copper: Glycylglycylhistidine Complex, Cancer Res., 1983, vol. 43, pp. 824–828.

    PubMed  CAS  Google Scholar 

  18. Kohen, R., and Nyska, A., Oxidation in Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for their Quantification, Toxicol. Pathol., 2002, vol. 30, pp. 620–650.

    Article  PubMed  CAS  Google Scholar 

  19. Kotamraju, S., Chitambar, C.R., Kalivendi, S.V., et al., Transferrin Receptor-dependent Iron Uptake is Responsible for Doxorubicin-mediated Apoptosis in Endothelial Cells, J. Biol. Chem., 2002, vol. 277, pp. 17179–17187.

    Article  PubMed  CAS  Google Scholar 

  20. Kwak, H.S., Yim, H.S., Chock, P.B., and Yim, M.B., Endogenous Intracellular Glutathionyl Radicals are Generated in Neuroblastoma Cells under Hydrogen Peroxide Oxidative Stress, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 4582–4586.

    Article  PubMed  CAS  Google Scholar 

  21. Long, L.H., and Halliwell, B., Oxidation and Generation of Hydrogen Peroxide by Thiol Compounds in Commonly Used Cell Culture Media. Biochem. Biophys. Res. Commun., 2001, vol. 286, pp. 991–994.

    Article  CAS  Google Scholar 

  22. Munday, R., Toxicity of Thiols and Disulphides: Involvement of Free-radical Species. Free Radic. Biol. Med., vol. 1989, vol. 7, pp. 659–673.

    Article  PubMed  CAS  Google Scholar 

  23. Nomizu, M., Kim, W.H., Yamamura, K., et al., Identification of Cell Binding Sites in the Laminin a1 Chain Carboxyl-terminal Globular Domain by Systematic Screening of Synthetic Peptides, J. Biol. Chem., 1995, vol. 270, pp. 20583–20590.

    Article  PubMed  CAS  Google Scholar 

  24. Pantopoulos, K., Mueller, S., Atzberger, A., et al., Differences in Regulation of Iron Regulatory Protein-1 (IRP-1) by Extra-and Intracellular Oxidative Stress, J. Biol. Chem., 1997, vol. 272, pp. 9802–9808.

    Article  PubMed  CAS  Google Scholar 

  25. Qanungo, S., Wang, M., and Nieminen, A.-L., N-Acetyl-L-cysteine Enhances Apoptosis through Inhibition of Nuclear Factor-κB in Hypoxic Murine Embryonic Fibroblasts, J. Biol. Chem., 2004, vol. 279, pp. 50455–50464.

    Article  PubMed  CAS  Google Scholar 

  26. Ren, J.-G., Xia, H.-L., Just, T., and Dai, Y.-R., Hydroxyl Radical-induced Apoptosis in Human Tumor Cells is Associated with Telomere Shortering but not Telomerase Inhibition and Caspase Activation, FEBS Lett., 2001, vol. 488, pp. 123–132.

    Article  PubMed  CAS  Google Scholar 

  27. Rumyantseva, G.V., Vainer, L.M., Tuvin, M.Yu., et al., Generation of OH-Radicals at Oxidation-reduction Reactions of Corrin Complexes of Cobalt, Izv. AN USSR, Ser. Chem., 1989, vol. 12, pp. 2679–2683.

    Google Scholar 

  28. Sagrista, M.L., Garcia, A.E., Africa De Madariaga, M., and Mora, M., Antioxidant and Pro-oxidant Effect of the Thiolic Compounds N-Acetyl-L-cysteine and Glutathione against Free Radical-induced Lipid Peroxidation, Free Radic. Res., 2002, vol. 36, pp. 329–340.

    Article  PubMed  CAS  Google Scholar 

  29. Shanin, Yu.N., Shanin, V.Yu., and Zinov’ev, E.V., Antioksidantnaya terapiya v klinicheskoi praktike (Antioxidant Therapy in Clinical Practice), St. Petersburg: ELBI-Press, 2003.

    Google Scholar 

  30. Solov’eva, M.E., Solov’ev, V.V., Faskhutdinova, A.A., et al., Pro-oxidant and Cytotoxic Action of Thiols in Combination with Vitamin B12b, Dokl. Akad. Nauk, 2005, vol. 404, no. 5, pp. 704–706.

    Google Scholar 

  31. Spear, N., and Aust, S.D., The effects of Different Buffers on the Oxidation of DNA by Thiols and Ferric Iron, J. Biochem. Mol. Toxicol., 1998, vol. 12, pp. 125–132.

    Article  PubMed  CAS  Google Scholar 

  32. Taatjes, D.J., Gaudiano, G., and Koch, T.H., Production of Formaldehyde and DNA-adriamycin or DNA-daunomycin Adducts, Initiated through Redox Chemistry of Dithiothreitol/iron, Xanthine Oxidase/NADH/iron, or Glutathione/iron, Chem. Res. Toxicol., 1997, vol. 10, pp. 953–961.

    Article  PubMed  CAS  Google Scholar 

  33. Tartier, L., McCarey, Y.L., Biaglow, J.E., et al., Apoptosis Induced by Dithiothreitol in HL-60 Cells Shows Early Activation of Caspase 3 and is Independent of Mitochondria, Cell Death Differ., 2000, vol. 7, pp. 1002–1010.

    Article  PubMed  CAS  Google Scholar 

  34. Thibodeau, P.A., Kocsis-Bedard, S., Courteau, J., et al., Thiols Can either Enhance or Suppress DNA Damage Induction by Catecholestrogens, Free Radic. Biol. Med., 2001, vol. 30, pp. 62–73.

    Article  PubMed  CAS  Google Scholar 

  35. Vol’pin, M.E., Krainova, N.Yu., Levitin, I. Ya., et al., Substances of the B12 Group in Combination with Ascorbic Acid as Potential Antitumor Agents, Ross. Khim. Zh., 1988, vol. 42, no. 5, pp. 116–127.

    Google Scholar 

  36. Yang, E.Y., Campbell, A., and Bondy, S.C., Configuration of Thiols Dictates Their Ability to Promote Iron-induced Reactive Oxygen Species Generation, Redox. Rep., 2000, vol. 5, pp. 371–375.

    Article  PubMed  CAS  Google Scholar 

  37. Zenkov, N.K., Lankin, V.Z., and Men’shikova, E.B., Okislitelnyi stress (Oxidative Stress), Moscow: Nauka, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.E. Solov’eva, V.V. Solov’ev, A.A. Faskhutdinova, A.A. Kudryavtsev, V.S. Akatov, 2007, published in Tsitologiya, Vol. 49, No. 1, 2007, pp. 70–78.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov’eva, M.E., Solov’ev, V.V., Faskhutdinova, A.A. et al. Prooxidant and cytotoxic action of N-acetylcysteine and glutathione in combinations with vitamin B12b . Cell Tiss. Biol. 1, 40–49 (2007). https://doi.org/10.1134/S1990519X07010063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X07010063

Key words

Navigation