Skip to main content
Log in

Using Piecewise Parabolic Reconstruction of Physical Variables in Rusanov’s Solver. II. Special Relativistic Magnetohydrodynamics Equations

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Rusanov’s scheme for solving hydrodynamic equations is one of the most robust in the class of Riemann solvers. It was previously shown that Rusanov’s scheme based on piecewise parabolic reconstruction of primitive variables gives a low-dissipative scheme relevant to Roe and Harten–Lax–Van Leer solvers when using a similar reconstruction. Moreover, unlike these solvers, the numerical solution is free from artifacts. In the case of equations of special relativistic magnetohydrodynamics, the spectral decomposition for solving the Riemann problem is quite complex and does not have an analytical solution. The present paper proposes the development of Rusanov’s scheme using a piecewise parabolic reconstruction of primitive variables to use in the equations of special relativistic magnetohydrodynamics. The developed scheme was verified using eight classical problems on the decay of an arbitrary discontinuity that describe the main features of relativistic magnetized flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. Ferrari, “Modeling extragalactic jets,” Annu. Rev. Astron. Astrophys. 36, 539–598 (1998).

    Article  Google Scholar 

  2. D. C. Gabuzda, A. B. Pushkarev, and N. N. Garnich, “Unusual radio properties of the BL Lac object 0820+225,” Mon. Not. R. Astron. Soc. 327 (1), 1–9 (2001).

    Article  Google Scholar 

  3. D. C. Gabuzda and J. L. Gomez, “VSOP polarization observations of the BL Lacertae object OJ 287,” Mon. Not. R. Astron. Soc. 320 (4), L49–L54 (2001).

    Article  Google Scholar 

  4. J. Attridge, D. Roberts, and J. Wardle, “Radio jet-ambient medium interactions on parsec scales in the Blazar 1055+018,” Astrophys. J. 518 (2), L87–L90 (1999).

    Article  Google Scholar 

  5. M. Krause and A. Lohr, “The magnetic field along the jets of NGC 4258,” Astron. Astrophys. 420 (1), 115–123 (2004).

    Article  Google Scholar 

  6. H. Kigure, Y. Uchida, M. Nakamura, S. Hirose, and R. Cameron, “Distribution of Faraday rotation measure in jets from active galactic nuclei. II. Prediction from our sweeping magnetic twist model for the wiggled parts of active galactic nucleus jets and tails,” Astrophys. J. 608 (1), 119–135 (2004).

    Article  Google Scholar 

  7. L. Anton, J. Miralles, J. Marti, J. Ibanez, M. Aloy, and P. Mimica, “Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver,” Astrophys. J. Suppl. Ser. 188 (1), 1–31 (2010).

    Article  Google Scholar 

  8. T. Leismann, L. Anton, M. Aloy, E. Mueller, J. Marti, J. Miralles, and J.Ibanez, “Relativistic MHD simulations of extragalactic jets,” Astron. Astrophys. 436 (2), 503–526 (2005).

    Article  Google Scholar 

  9. J. Nunez-de la Rosa and C.-D. Munz, “XTROEM-FV: A new code for computational astrophysics based on very high order finite-volume methods—II. Relativistic hydro- and magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 460 (1), 535–559 (2016).

    Article  Google Scholar 

  10. F. Lora-Clavijo, A. Cruz-Osorio, and F. Guzman, “CAFE: A new relativistic MHD code,” Astrophys. J. Suppl. Ser. 218 (2), 24 (2015).

    Article  Google Scholar 

  11. I. M. Kulikov, “Using piecewise parabolic reconstruction of physical variables in the Rusanov solver. I. The special relativistic hydrodynamics equations,” J. Appl. Ind. Math. 17 (4), 737–749 (2023).

    Article  Google Scholar 

  12. S. S. Komissarov, “A Godunov-type scheme for relativistic magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 303 (2), 343–366 (1999).

    Article  Google Scholar 

  13. D. Balsara, “Total variation diminishing scheme for relativistic magnetohydrodynamics,” Astrophys. J. Suppl. Ser. 132 (1), 83–101 (2001).

    Article  Google Scholar 

  14. B. Giacomazzo and L. Rezzolla, “The exact solution of the Riemann problem in relativistic magnetohydrodynamics,” J. Fluid Mech. 562, 223–259 (2006).

    Article  MathSciNet  Google Scholar 

  15. M. Brio and C. Wu, “An upwind differencing scheme for the equations of ideal magnetohydrodynamics,” J. Comput. Phys. 75 (2), 400–422 (1988).

    Article  MathSciNet  Google Scholar 

  16. Y. A. Kriksin and V. F. Tishkin, “Variational entropic regularization of the discontinuous Galerkin method for gasdynamic equations,” Math. Models Comput. Simul. 11 (6), 1032–1040 (2019).

    Article  MathSciNet  Google Scholar 

  17. S. K. Godunov, “Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field,” Comput. Math. Math. Phys. 52 (5), 787–799 (2012).

    Article  MathSciNet  Google Scholar 

  18. S. K. Godunov, “About inclusion of Maxwell’s equations in systems relativistic of the invariant equations,” Comput. Math. Math. Phys. 53 (8), 1179–1182 (2013).

    Article  MathSciNet  Google Scholar 

  19. S. K. Godunov and I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee,” Comput. Math. Math. Phys. 54 (6), 1012–1024 (2014).

    Article  MathSciNet  Google Scholar 

  20. H. Freistuehler and Yu. Trakhinin, “Symmetrizations of RMHD equations and stability of relativistic current–vortex sheets,” Class. Quantum Gravity 30 (8), 085012 (2013).

    Article  MathSciNet  Google Scholar 

  21. Yu. Trakhinin, “Local existence of contact discontinuities in relativistic magnetohydrodynamics,” Sib. Adv. Math. 30 (2), 55–76 (2020).

    Article  MathSciNet  Google Scholar 

  22. D. Lee, H. Faller, and A. Reyes, “The Piecewise Cubic Method (PCM) for computational fluid dynamics,” J. Comput. Phys. 341 (1), 230–257 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 23-11-00014, https://rscf.ru/project/23-11-00014/..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Kulikov.

Additional information

Translated by V. Potapchouck

CONFLICT OF INTEREST. The author of this work declares that he has no conflicts of interest.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, I.M. Using Piecewise Parabolic Reconstruction of Physical Variables in Rusanov’s Solver. II. Special Relativistic Magnetohydrodynamics Equations. J. Appl. Ind. Math. 18, 81–92 (2024). https://doi.org/10.1134/S1990478924010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478924010083

Keywords

Navigation