Skip to main content
Log in

Differential Equations with a Small Parameter and Multipeak Oscillations

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a nonlinear dynamical system of autonomous ordinary differential equations with a small parameter \( \mu \) such that two variables \( x \) and \( y \) are fast and another one \( z \) is slow. If we take the limit as \( \mu \to 0 \), then this becomes a “degenerate system” included in the one-parameter family of two-dimensional subsystems of fast motions with the parameter \( z \) in some interval. It is assumed that in each subsystem there exists a structurally stable limit cycle \( l_z \). In addition, in the complete dynamical system there is some structurally stable periodic orbit \( L \) that tends to a limit cycle \( l_{z_0} \) for some \( z=z_0 \) as \( \mu \) tends to zero. We can define the first return map, or the Poincaré map, on a local cross section in the hyperplane \( (y,z) \) orthogonal to \( L \) at some point. We prove that the Poincaré map has an invariant manifold for the fixed point corresponding to the periodic orbit \( L \) on a guaranteed interval over the variable \( y \), and the interval length is separated from zero as \( \mu \) tends to zero. The proved theorem allows one to formulate some sufficient conditions for the existence and/or absence of multipeak oscillations in the complete dynamical system. As an example of application of the obtained results, we consider some kinetic model of the catalytic reaction of hydrogen oxidation on nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. M. Zhabotinskii, Concentration Self-Oscillations (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. D. Gurel and O. Gurel, Oscillations in Chemical Reactions (Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983; Mir, Moscow, 1986).

    Google Scholar 

  3. G. Ertl, “Oscillatory catalytic reactions at single-crystal surfaces,” Adv. Catal. 37, 213–277 (1990).

    Article  Google Scholar 

  4. F. Schüth, B. E. Henry, and L. D. Schmidt, “Oscillatory reactions in heterogeneous catalysis,” Adv. Catal. 39, 51–127 (1993).

    Article  Google Scholar 

  5. R. Imbihl, “Oscillatory reactions on single-crystal surfaces,” Prog. Surf. Sci. 44, 185–343 (1993).

    Article  Google Scholar 

  6. R. Imbihl and G. Ertl, “Oscillatory kinetics in heterogeneous catalysis,” Chem. Rev. 95 (3), 697–733 (1995). https://doi.org/10.1021/cr00035a012

    Article  Google Scholar 

  7. M. M. Slinko and N. I. Jaeger, Oscillating Heterogeneous Catalytic Systems (Elsevier, Amsterdam, 1994).

    Google Scholar 

  8. V. D. Belyaev, M. M. Slinko, M. G. Slinko, and V. I. Timoshenko, “Self-oscillations in the heterogeneous catalytic reaction of hydrogen with oxygen,” Dokl. Akad. Nauk SSSR 214 (5), 1098–1100 (1974) [in Russian].

    Google Scholar 

  9. M. G. Slinko, “Dynamics of chemical processes and reactors,” Khim. Prom-st. (11), 260–268 (1979) [in Russian].

  10. E. S. Kurkina, N. V. Peskov, M. M. Slinko, and M. G. Slinko, “On the nature of chaotic fluctuations in the rate of the CO oxidation reaction on a Pd-zeolite catalyst,” Dokl. Ross. Akad. Nauk 351 (4), 497–501 (1996) [in Russian].

    Google Scholar 

  11. E. A. Lashina, V. V. Kaichev, N. A. Chumakova, V. V. Ustyugov, G. A. Chumakov, and V. I. Bukhtiyarov, “Mathematical simulation of self-oscillations in methane oxidation on nickel: An isothermal model,” Kinet. Catal. 53, 374–383 (2012). https://doi.org/10.1134/S0023158412030081

    Article  Google Scholar 

  12. E. A. Lashina, V. V. Kaichev, A. A. Saraev, Z. S. Vinokurov, N. A. Chumakova, G. A. Chumakov, and V. I. Bukhtiyarov, “Experimental study and mathematical modeling of self-sustained kinetic oscillations in catalytic oxidation of methane over nickel,” J. Phys. Chem. A 121, 6874–6886 (2017). https://doi.org/10.1021/acs.jpca.7b04525

    Article  Google Scholar 

  13. E. A. Lashina, V. V. Kaichev, A. A. Saraev, N. A. Chumakova, G. A. Chumakov, and V. I. Bukhtiyarov, “Self-sustained oscillations in oxidation of propane over nickel: Experimental study and mathematical modelling,” Top. Catal. 63 (1–2), 33–48 (2020). https://doi.org/10.1007/s11244-019-01219-5

    Article  Google Scholar 

  14. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Mayer, Qualitative Theory of Second-Order Dynamical Systems (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  15. P. Hartman, Ordinary Differential Equations (John Wiley & Sons, New York–London–Sydney, 1964; Mir, Moscow, 1970).

    Google Scholar 

  16. T. Poston and I. Stuart, Catastrophe Theory and Its Applications (Pitman, London–San Francisco, 1978; Mir, Moscow, 1980).

    Google Scholar 

  17. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (CRC Press, Boca Raton, 1995).

    Google Scholar 

  18. L. P. Shil’nikov, A. L. Shil’nikov, D. V. Turaev, and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics. Part 1 (World Scientific, Singapore, 1998; Inst. Komp’yut. Issled., Moscow–Izhevsk, 2004).

    Book  Google Scholar 

  19. L. P. Shil’nikov, A. L. Shil’nikov, D. V. Turaev, and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics. Part 2 (World Scientific, Singapore, 2001; Inst. Komp’yut. Issled., Moscow–Izhevsk, 2009).

    Book  Google Scholar 

  20. A. Abbondandolo, L. Asselle, G. Benedetti, M. Mazzucchelli, and I. A. Taimanov, “The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere,” Adv. Nonlinear Stud. 17 (1), 17–30 (2017). https://doi.org/10.1515/ans-2016-6003

    Article  MathSciNet  Google Scholar 

  21. A. K. Zvonkin and M. A. Shubin, “Non-standard analysis and singular perturbations of ordinary differential equations,” Russ. Math. Surv. 39 (20), 77–127 (1984).

    Google Scholar 

  22. A. B. Vasil’eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations (Vyssh. Shkola, Moscow, 1990) [in Russian].

    Google Scholar 

  23. H. G. Solari, M. A. Natiello, and G. B. Mindlin, Nonlinear Dynamics: A Two-way Trip from Physics to Math (Inst. Phys., London—Bristol—Philadelphia, 1996).

    Google Scholar 

  24. Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1998).

    Google Scholar 

  25. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983; Inst. Kom’yut. Issled., Moscow–Izhevsk, 2002).

    Book  Google Scholar 

  26. G. A. Chumakov, M. G. Slinko, and V. D. Belyaev, “Complex changes in the rate of heterogeneous catalytic reactions,” Dokl. Akad. Nauk SSSR 253 (3), 653–658 (1980) [in Russian].

    MathSciNet  Google Scholar 

  27. G. A. Chumakov and M. G. Slinko, “Kinetic turbulence (chaos) of the reaction rate of interaction of hydrogen with oxygen over metal catalysts,” Dokl. Akad. Nauk SSSR 266 (5), 1194–1198 (1982) [in Russian].

    Google Scholar 

  28. G. A. Chumakov and N. A. Chumakova, “Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards,” Chem. Eng. J. 91, 151–158 (2003). https://doi.org/10.1016/S1385-8947(02)00148-1

    Article  Google Scholar 

  29. G. A. Chumakov, “Mathematical aspects of modeling the self-oscillations of the heterogeneous catalytic reaction rate. I,” Sib. Mat. Zh. 46 (5), 1179–1189 (2005) [Sib. Math. J. 46 (5), 948—956 (2005)]. https://doi.org/10.1007/s11202-005-0091-1

  30. G. A. Chumakov, “Dynamics of a system of nonlinear differential equations,” Sib. Mat. Zh. 48 (5), 1180–1195 (2007) [Sib. Math. J. 48 (5), 949–960 (2007)]. https://doi.org/10.1007/s11202-007-0098-x

  31. G. A. Chumakov, N. A. Chumakova, and E. A. Lashina, “Modeling the complex dynamics of heterogeneous catalytic reactions with fast, intermediate, and slow variables,” Chem. Eng. J. 282, 11–19 (2015). https://doi.org/10.1016/j.cej.2015.03.017

    Article  Google Scholar 

  32. G. A. Chumakov and N. A. Chumakova, “Localization of an unstable solution of a system of three nonlinear ordinary differential equations with a small parameter,” Sib. Zh. Ind. Mat. 25 (4), 221–238 (2022), https://doi.org/10.33048/SIBJIM.2022.25.417 [J. Appl. Ind. Math. 16 (4), 606–620 (2022)]. https://doi.org/10.1134/S1990478922040032

  33. V. I. Bykov and S. B. Tsybenova, “Implementation of the parameter continuation method for a system of two equations,” Vychisl. Tekhnol. 7 (5), 21–28 (2002) [in Russian].

    MathSciNet  Google Scholar 

  34. L. S. Pontryagin and L. V. Rodygin, “Periodic solution of one system of ordinary differential equations with a small parameter multiplying the derivatives,” Dokl. Akad. Nauk SSSR 132 (3), 537–540 (1960) [in Russian].

    Google Scholar 

Download references

Funding

The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of state assignments of Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project FWNF-2022-0005, and Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, project no. FWUR-2024-0037. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Chumakov or N. A. Chumakova.

Additional information

Translated by V. Potapchouck

CONFLICT OF INTEREST. The authors of this work declare that they have no conflicts of interest.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, G.A., Chumakova, N.A. Differential Equations with a Small Parameter and Multipeak Oscillations. J. Appl. Ind. Math. 18, 18–35 (2024). https://doi.org/10.1134/S1990478924010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478924010034

Keywords

Navigation