Skip to main content
Log in

Numerical Differentiation by the Polynomial-Exponential Basis

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Our objective is to calculate the derivatives of data corrupted by noise. This is a challenging task as even small amounts of noise can result in significant errors in the computation. This is mainly due to the randomness of the noise, which can result in high-frequency fluctuations. To overcome this challenge, we suggest an approach that involves approximating the data by eliminating high-frequency terms from the Fourier expansion of the given data with respect to the polynomial-exponential basis. This truncation method helps to regularize the issue, while the use of the polynomial-exponential basis ensures accuracy in the computation. We demonstrate the effectiveness of our approach through numerical examples in one and two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. K. Ahnert and L. A. Segel, “Numerical differentiation of experimental data: local versus global methods,” Comput. Phys. Commun. 177, 764–774 (2007).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. F. V. Breugel, J. N. Kutz, and B. W. Brunton, “Numerical differentiation of noisy data: A unifying multi-objective optimization framework,” IEEE Access 8, 196865–196877 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Mathematics and Its Applications (Kluwer, Dordrecht, 1996).

    Book  Google Scholar 

  4. K. O. Friedrichs, “The identity of weak and strong extensions of differential operators,” Trans. Am. Math. Soc. 55, 132–151 (1944).

    Article  MathSciNet  Google Scholar 

  5. C. W. Groetsch, “Differentiation of approximately specified functions,” Am. Math. Mon. 98, 847–850 (1991).

    Article  MathSciNet  Google Scholar 

  6. M. Hanke and O. Sherzer, “Inverse problems light numerical differentiation,” Am. Math. Mon. 108, 512–521 (2001).

    Article  MathSciNet  Google Scholar 

  7. V. A. Khoa, G. W. Bidney, M. V. Klibanov, L. H. Nguyen, L. Nguyen, A. Sullivan, and V. N. Astratov, “Convexification and experimental data for a 3D inverse scattering problem with the moving point source,” Inverse Probl. 36, 085007 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. A. Khoa, G. W. Bidney, M. V. Klibanov, L. H. Nguyen, L. Nguyen, A. Sullivan, and V. N. Astratov, “An inverse problem of a simultaneous reconstruction of the dielectric constant and conductivity from experimental backscattering data,” Inverse Probl. Sci. Eng. 29 (5), 712–735 (2021).

    Article  MathSciNet  Google Scholar 

  9. V. A. Khoa, M. V. Klibanov, and L. H. Nguyen, “Convexification for a 3D inverse scattering problem with the moving point source,” SIAM J. Imaging Sci. 13 (2), 871–904 (2020).

    Article  MathSciNet  Google Scholar 

  10. M. V. Klibanov, “Convexification of restricted Dirichlet to Neumann map,” J. Inverse Ill-Posed Probl. 25 (5), 669–685 (2017).

    Article  MathSciNet  Google Scholar 

  11. M. V. Klibanov, T. T. Le, and L. H. Nguyen, “Convergent numerical method for a linearized travel time tomography problem with incomplete data,” SIAM J. Sci. Comput. 42, B1173–B1192 (2020).

    Article  Google Scholar 

  12. M. V. Klibanov and J. Li, Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data (De Gruyter, Berlin, 2021).

    Book  Google Scholar 

  13. M. V. Klibanov and L. H. Nguyen, “PDE-based numerical method for a limited angle X-ray tomography,” Inverse Probl. 35, 045009 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. V. Klibanov and A. Timonov, “A comparative study of two globally convergent numerical methods for acoustic tomography,” Commun. Anal. Comput. 1, 12–31 (2023).

    Google Scholar 

  15. I. Knowles and R. J. Renka, “Methods for numerical differentiation of noisy data,” Electron. J. Differ. Equat. Conf. 21, 235–246 (2014).

    MathSciNet  Google Scholar 

  16. I. Knowles and R. Wallace, “A variational method for numerical differentiation,” Numer. Math. 70, 91–110 (1995).

    Article  MathSciNet  Google Scholar 

  17. T. T. Le and L. H. Nguyen, “The gradient descent method for the convexification to solve boundary value problems of quasi-linear PDEs and a coefficient inverse problem,” J. Sci. Comput. 91 (3), 74 (2022).

    Article  MathSciNet  Google Scholar 

  18. V. A. Morozov, Methods for Solving Incorrectly Posed Problems (Springer Verlag, New York, 1984).

    Book  Google Scholar 

  19. R. Ramlau, “Morozov’s discrepancy principle for Tikhonov regularization of nonlinear operators,” J. Numer. Funct. Anal. Opt. 23, 147–172 (2002).

    Article  MathSciNet  Google Scholar 

  20. A. G. Ramm and A. B. Smirnova, “On stable numerical differentiation,” Math. Comput. 70, 1131–1153 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  21. C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).

    Article  MathSciNet  Google Scholar 

  22. C. H. Reinsch, “Smoothing by spline functions. II,” Numer. Math. 16, 451–454 (1971).

    Article  MathSciNet  Google Scholar 

  23. O. Scherzer, “The use of Morozov’s discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems,” SIAM J. Numer. Anal. 30, 1796–1838 (1993).

    Article  MathSciNet  Google Scholar 

  24. I. J. Schoenberg, “Spline functions and the problem of graduation,” Proc. Am. Math. Soc. 52, 497–950 (1964).

    MathSciNet  Google Scholar 

Download references

Funding

The works of PMN, TTL, and LHN were partially supported by National Science Foundation grant no. DMS-2208159, and by funds provided by the Faculty Research Grant program at UNC Charlotte Fund no. 111272, and by the CLAS small grant provided by the College of Liberal Arts & Sciences, UNC Charlotte.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. M. Nguyen, T. T. Le, L. H. Nguyen or M. V. Klibanov.

Additional information

CONFLICT OF INTEREST. The authors of this work declare that they have no conflicts of interest.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P.M., Le, T.T., Nguyen, L.H. et al. Numerical Differentiation by the Polynomial-Exponential Basis. J. Appl. Ind. Math. 17, 928–942 (2023). https://doi.org/10.1134/S1990478923040191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478923040191

Keywords

Navigation