Skip to main content
Log in

A Difference Method for Calculating the Heat Flux on an Inaccessible Boundary in a Heat Conduction Problem

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The continuation problem for the heat equation is considered. Determining the heat flux on an inaccessible boundary reduces to an inverse problem. An implicit difference scheme is used for the numerical solution of the inverse problem. At each time step, the heat flux on the inaccessible boundary is calculated for the difference analog of the elliptic equation by an economical direct method. The proposed algorithm substantially expands the range of problems being solved and can be used to create devices capable of real-time determination of the heat flux on parts of inhomogeneous structures inaccessible for measurements, for example, on the inner radius of pipes made of various materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. Zachár, “Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall,” Int. J. Heat Mass Transfer 53 (19–20), 3928–3939 (2010).

    Article  MATH  Google Scholar 

  2. A. Kundan, J. L. Plawsky, and P. C. Wayner, Jr., “Thermophysical characteristics of a wickless heat pipe in microgravity–constrained vapor bubble experiment,” Int. J. Heat Mass Transfer 78, 1105–1113 (2014).

    Article  Google Scholar 

  3. A. L. Karchevsky, I. V. Marchuk, and O. A. Kabov, “Calculation of the heat flux near the liquid–gas–solid contact line,” Appl. Math. Model. 40 (2), 1029–1037 (2016).

    Article  MATH  Google Scholar 

  4. V. V. Cheverda, A. L. Karchevsky, I. V. Marchuk, and O. A. Kabov, “Heat flux density in the region of droplet contact line on a horizontal surface of a thin heated foil,” Thermophys. Aeromech. 24 (5), 803–806 (2017).

    Article  Google Scholar 

  5. O. M. Alifanov, Inverse Heat Transfer Problems (Springer Sci. & Bus. Media, New York, 2012).

    MATH  Google Scholar 

  6. A. N. Tikhonov and V. Y. Arsenin, Methods of Solution of Ill-Posed Problems (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  7. L. Marin and D. Lesnic, “The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations,” Comput. Struct. 83 (4–5), 267–278 (2005).

    Article  MathSciNet  Google Scholar 

  8. L. Marin, “A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations,” Appl. Math. Comput. 165 (2), 355–374 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Jin and Y. Zheng, “A meshless method for some inverse problems associated with the Helmholtz equation,” Comput. Methods Appl. Mech. Eng. 195 (19–22), 2270–2288 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Wei, Y. C. Hon, and L. Ling, “Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators,” Eng. Anal. Boundary Elem. 31 (4), 373–385 (2007).

    Article  MATH  Google Scholar 

  11. L. Marin, A. Karageorghis, and D. Lesnic, “The MFS for numerical boundary identification in two-dimensional harmonic problems,” Eng. Anal. Boundary Elem. 35 (3), 342–354 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Wei and Y. G. Chen, “A regularization method for a Cauchy problem of Laplace’s equation in an annular domain,” Math. Comput. Simul. 82 (11), 2129–2144 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Caille, L. Marin, and F. Delvare, “A meshless fading regularization algorithm for solving the Cauchy problem for the three-dimensional Helmholtz equation,” Numer. Algorithms 82 (3), 869–894 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Cheng, Y. C. Hon, T. Wei, and M. Yamamoto, “Numerical computation of a Cauchy problem for Laplace’s equation,” J. Appl. Math. Mech. 81 (10), 665–674 (2001).

    MathSciNet  MATH  Google Scholar 

  15. H. H. Qin, T. Wei, and R. Shi, “Modified Tikhonov regularization method for the Cauchy problem of the Helmholtz equation,” J. Comput. Appl. Math. 224 (1), 39–53 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. L. Karchevsky, “Reformulation of an inverse problem statement that reduces computational costs,” Eurasian J. Math. Comput. Appl. 1 (2), 4–20 (2013).

    MathSciNet  Google Scholar 

  17. M. J. Colaço and C. J. S. Alves, “A fast non-intrusive method for estimating spatial thermal contact conductance by means of the reciprocity functional approach and the method of fundamental solutions,” Int. J. Heat Mass Transfer 60, 653–663 (2013).

  18. M. J. Colaço, C. J. S. Alves, and F. Bozzoli, “The reciprocity function approach applied to the non-intrusive estimation of spatially varying internal heat transfer coefficients in ducts: Numerical and experimental results,” Int. J. Heat Mass Transfer 90, 1221–1231 (2015).

    Article  Google Scholar 

  19. L. Cattani, D. Maillet, F. Bozzoli, and S. Rainieri, “Estimation of the local convective heat transfer coefficient in pipe flow using a 2d thermal quadrupole model and truncated singular value decomposition,” Int. J. Heat Mass Transfer 91, 1034–1045 (2015).

    Article  Google Scholar 

  20. A. Mocerino, M. J. Colaço, F. Bozzoli, and S. Rainieri, “Filtered reciprocity functional approach to estimate internal heat transfer coefficients in 2d cylindrical domains using infrared thermography,” Int. J. Heat Mass Transfer 125, 1181–1195 (2018).

    Article  Google Scholar 

  21. F. S. V. Bazán, L. Bedin, and F. Bozzoli, “New methods for numerical estimation of convective heat transfer coefficient in circular ducts,” Int. J. Therm. Sci. 139, 387–402 (2019).

    Article  Google Scholar 

  22. S. B. Sorokin, “An efficient direct method for numerically solving the Cauchy problem for Laplace’s equation,” Numer. Anal. Appl. 12, 87–103 (2019).

    Article  MathSciNet  Google Scholar 

  23. S. B. Sorokin, “An implicit iterative method for numerical solution of the Cauchy problem for elliptic equations,” J. Appl. Ind. Math. 13, 759–770 (2019).

    Article  MathSciNet  Google Scholar 

  24. V. Kozlov, V. Maz’ya, and A. Fomin, “An iterative method for solving the Cauchy problem for elliptic equations,” Comput. Math. Math. Phys. 31 (1), 45–52 (1991).

    MathSciNet  MATH  Google Scholar 

  25. L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, and X. Wen, “An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation,” Comput. Methods Appl. Mech. Eng. 192 (5–6), 709–722 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Marin, “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems,” Eng. Anal. Boundary Elem. 35 (3), 415–429 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. I. Kabanikhin and A. L. Karchevsky, “Optimizational method for solving the Cauchy problem for an elliptic equation,” J. Inverse Ill-Posed Probl. 3 (1), 21–46 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Marin, L. Elliott, P. Heggs, D. Ingham, D. Lesnic, and X. Wen, “Conjugate gradient–boundary element solution to the Cauchy problem for Helmholtz-type equations,” Comput. Mech. 31 (3-–4), 367–377 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Marin, L. Elliott, P. Heggs, D. Ingham, D. Lesnic, and X. Wen, “BEM solution for the Cauchy problem associated with Helmholtz-type equations by the Landweber method,” Eng. Anal. Boundary Elem. 28 (9), 1025–1034 (2004).

    Article  MATH  Google Scholar 

  30. S. I. Kabanikhin, M. A. Shishlenin, D. B. Nurseitov, A. T. Nurseitova, and S. E. Kasenov, “Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation,” J. Appl. Math. 2014, 786326 (2014). https://doi.org/10.1155/2014/786326

    Article  MathSciNet  MATH  Google Scholar 

  31. B. T. Johansson and D. Lesnic, “A method of fundamental solutions for transient heat conduction,” Eng. Anal. Boundary Elem. 32 (9), 697–703 (2008).

    Article  MATH  Google Scholar 

  32. B. T. Johansson, D. Lesnic, and T. Reeve, “A method of fundamental solutions for two-dimensional heat conduction,” Int. J. Comput. Math. 88 (8), 1697–1713 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Cao, “Numerical computation based on the method of fundamental solutions for a Cauchy problem of heat equation,” Turk. J. Anal. Number Theory 2 (3), 70–74 (2014).

    Article  Google Scholar 

  34. T. H. Reeve, “The method of fundamental solutions for some direct and inverse problems,” Ph. D. Thesis (Univ. Birmingham, 2013).

  35. N. M. Yaparova, “Numerical methods for solving a boundary-value inverse heat conduction problem,” Inverse Probl. Sci. Eng. 22 (5), 832–847 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  36. S. V. Solodusha and N. M. Yaparova, “Numerical solving an inverse boundary value problem of heat conduction using Volterra equations of the first kind,” Numer. Anal. Appl. 8 (3), 267–274 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. S. Belonosov and M. A. Shishlenin, “Continuation problem for the parabolic equation with the data on the part of the boundary,” Sib. Electron. Math. Rep. 11, 22–34 (2014).

    Google Scholar 

  38. A. S. Belonosov and M. A. Shishlenin, “Regularization methods of the continuation problem for the parabolic equation,” in Int. Conf. Numer. Anal. Appl. (Springer-Verlag, Cham, 2017), 220–226.

  39. A. Belonosov, M. Shishlenin, and D. Klyuchinskiy, “A comparative analysis of numerical methods of solving the continuation problem for 1D parabolic equation with the data given on the part of the boundary,” Adv. Comput. Math. 45 (2), 735–755 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Prikhodko and M. Shishlenin, “Comparative analysis of the numerical methods for 3d continuation problem for parabolic equation with data on the part of the boundary,” J. Phys. Conf. Ser. 2092 (1), 012010 (2021).

    Article  Google Scholar 

  41. A. L. Karchevsky, “Development of the heated thin foil technique for investigating nonstationary transfer processes,” Interfacial Phenom. Heat Transfer 6 (3), 179–185 (2018).

    Article  Google Scholar 

  42. G. I. Marchuk and A. A. Brown, Methods of Numerical Mathematics. Vol. 2 (Springer-Verlag, New York, 1982).

    Book  Google Scholar 

  43. A. A. Samarskii, The Theory of Difference Schemes (CRC Press, , 2001).

  44. A. A. Samarskii and V. B. Andreev, Difference Methods for Elliptic Equations (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  45. A. A. Samarskii and E. S. Nikolaev, Methods of Solution of Grid Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  46. S. I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Applications. Vol. 55 (Walter De Gruyter, Berlin, 2011).

    Book  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences, project no. 0251-2021-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Sorokin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, S.B. A Difference Method for Calculating the Heat Flux on an Inaccessible Boundary in a Heat Conduction Problem. J. Appl. Ind. Math. 17, 651–663 (2023). https://doi.org/10.1134/S1990478923030183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478923030183

Keywords

Navigation