Skip to main content
Log in

Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. J. Folkman and M. Klagsbrun, “Angiogenic factors,” Science 235 (4787), 442–447 (1987).

    Article  Google Scholar 

  2. A. R. A. Anderson and M. A. J. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bull. Math. Biol. 60, 857–899 (1998).

    Article  MATH  Google Scholar 

  3. A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele, and A. M. Thompson, “Mathematical modelling of tumour invasion and metastasis,” J. Theor. Med. 2 (2), 129–154 (2000).

    Article  MATH  Google Scholar 

  4. M. A. J. Chaplain and G. Lolas, “Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity,” Am. Inst. Math. Sci. 1 (3), 399–439 (2006).

    MathSciNet  MATH  Google Scholar 

  5. H. Enderling and M. A. J. Chaplain, “Mathematical modeling of tumor growth and treatment,” Curr. Pharm. Des. 20 (30), 4934–4940 (2014).

    Article  Google Scholar 

  6. J. A. Adam and N. Bellomo, A Survey of Models for Tumour-Immune System Dynamics (Birkhäuser, Boston, 1996).

    Google Scholar 

  7. L. Preziosi, Cancer Modelling and Simulation (Chapman Hall/CRC Press, Boca Raton, 2003).

    Book  MATH  Google Scholar 

  8. N. Bellomo, M. A. J. Chaplain, and E. De Angelis, Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (Birkhäuser, Boston, 2008) (Modeling and Simulation in Science, Engineering and Technology).

  9. R. P. Araujo and D. L. S. McElwain, “A history of the study of solid tumour growth: The contribution of mathematical modelling,” Bull. Math. Biol. 66 (5), 1039–1091 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise, and V. Cristini, “Nonlinear modelling of cancer: Bridging the gap between cells and tumours,” Nonlinearity 23, R1–R91 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. A. Gatenby and E. T. Gawlinski, “A reaction–diffusion model of cancer invasion,” Cancer Res. 56 (24), 5745–5753 (1996).

    Google Scholar 

  12. A. J. Perumpanani, J. A. Sherratt, J. Norbury, and H. M. Byrne, “Biological inferences from a mathematical model for malignant invasion,” Invasion Metastasis 16 (4–5), 209–221 (1996).

    Google Scholar 

  13. C. S. Patlak, “Random walk with persistence and external bias,” Bull. Math. Biophys. 15 (3), 311–338 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. F. Keller and L. A. Segel, “Initiation of slime mold aggregation viewed as an instability,” J. Theor. Biol. 26 (3), 399–415 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. F. Keller and L. A. Segel, “Model for chemotaxis,” J. Theor. Biol. 30 (2), 225–234 (1971).

    Article  MATH  Google Scholar 

  16. E. F. Keller and L. A. Segel, “Traveling bands of chemotactic bacteria: A theoretical analysis,” J. Theor. Biol. 30 (2), 235–248 (1971).

    Article  MATH  Google Scholar 

  17. K. J. Painter, “Mathematical models for chemotaxis and their applications in self-organisation phenomena,” J. Theor. Biol. 481, 162–182 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. R. A. Anderson, “A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion,” Math. Med. Biol. 22 (2), 163–186 (2005).

    Article  MATH  Google Scholar 

  19. M. A. J. Chaplain and G. Lolas, “Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,” Math. Models Methods Appl. Sci. 15, 1685–1734 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Enderling, A. R. A. Anderson, M. A. J. Chaplain, A. J. Munro, and J. S. Vaidya, “Mathematical modelling of radiotherapy strategies for early breast cancer,” J. Theor. Biol. 241 (1), 158–171 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Andasari, A. Gerisch, G. Lolas, A. P. South, and M. A. J. Chaplain, “Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation,” J. Math. Biol. 63 (1), 141–171 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Gerisch and M. A. J. Chaplain, “Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion,” J. Theor. Biol. 250 (4), 684–704 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. H. B. Frieboes, X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini, “An integrated computational/experimental model of tumor invasion,” Cancer Res. 66, 1597–1604 (2006).

    Article  Google Scholar 

  24. K. J. Painter, “Modelling cell migration strategies in the extracellular matrix,” J. Math. Biol. 58 (4–5), 511–543 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Ramis-Conde, M. A. J. Chaplain, and A. R. A. Anderson, “Mathematical modelling of cancer cell invasion of tissue,” Math. Comput. Model. 47 (5–6), 533–545 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. K. J. Painter, N. A. Armstrong, and J. A. Sherratt, “The impact of adhesion on cellular invasion processes in cancer and development,” J. Theor. Biol. 264, 1057–1067 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Peng, D. Trucu, P. Lin, A. Thompson, and M. A. J. Chaplain, “A multiscale mathematical model of tumour invasive growth,” Bull. Math. Biol. 79 (3), 389–429 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Domschke, D. Trucu, A. Gerisch, and M. A. J. Chaplain, “Structured models of cell migration incorporating molecular binding processes,” J. Math. Biol. 75 (5–6), 1517–1561 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Bitsouni, M. A. J. Chaplain, and R. Eftimie, “Mathematical modelling of cancer invasion: The multiple roles of TGF- \( \beta \) pathway on tumour proliferation and cell adhesion,” Math. Models Methods Appl. Sci. 27 (10), 1929 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Bitsouni, D. Trucu, M. A. J. Chaplain, and R. Eftimie, “Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion,” Math. Med. Biol. 35 (4), 541–577 (2018).

    MathSciNet  MATH  Google Scholar 

  31. Z. Szymanska, M. Cytowski, E. Mitchell, C. K. Macnamara, and M. A. J. Chaplain, “Computational modelling of cancer development and growth: Modelling at multiple scales and multiscale modelling,” Bull. Math. Biol. 80 (5), 1366–1403 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Y. H. Pang and Y. Wang, “Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,” J. Differ. Equat. 263, 1269–1292 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Ke and J. Zheng, “A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant,” Nonlinearity 31 (10), 4602 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Bubba, C. Pouchol, N. Ferrand, G. Vidal, L. Almeida, B. Perthame, and M. Sabbah, “A chemotaxis-based explanation of spheroid formation in 3d cultures of breast cancer cells,” J. Theor. Biol. 479, 73–80 (2019).

    Article  MathSciNet  Google Scholar 

  35. T. Xiang and J. Zheng, “A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source,” Nonlinearity 32, 4890 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Tao and M. Winkler, “Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy,” J. Differ. Equat. 268 (9), 4973 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. J. Perumpanani, J. A. Sherratt, J. Norbury, and H. Byrne, “A two parameter family of travelling waves with a singular barrier arising from the modelling of matrix mediated malignant invasion,” Physica. Ser. D: Nonlinear Phenom. 126, 145–159 (1999).

    Article  MATH  Google Scholar 

  38. B. P. Marchant, J. Norbury, and J. A. Sherratt, “Travelling wave solutions to a haptotaxis-dominated model of malignant invasion,” Nonlinearity 14 (6), 1653–1671 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Sherratt, “On the form of smooth-front travelling waves in a reaction–diffusion equation with degenerate nonlinear diffusion,” Math. Model. Nat. Phenom. 5 (5), 64–79 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  40. K. Harley, P. Van Heijster, R. Marangell, G. J. Pettet, and M. Wechselberger, “Existence of traveling wave solutions for a model of tumor invasion,” J. Appl. Dyn. Syst. 13 (1), 366–396 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  41. P. J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, 1986).

  42. H. Bateman and A. Erdélyi, Higher Transcendental Functions. Vol. 2 (McGraw-Hill, New York–Toronto–London, 1953).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shubina.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubina, M.V. Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion. J. Appl. Ind. Math. 17, 616–627 (2023). https://doi.org/10.1134/S1990478923030158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478923030158

Keywords

Navigation