Skip to main content
Log in

Iterative Solution of a Retrospective Inverse Heat Conduction Problem with Inhomogeneous Dirichlet Boundary Conditions

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider a retrospective inverse heat conduction problem with nonstationary inhomogeneous Dirichlet boundary conditions. It is approximated by a Crank–Nicolson scheme that has the second order of approximation both in the spatial variable and in time. It is proposed to use the iterative method of conjugate gradients to determine the solution of the resulting system of linear algebraic equations. Examples are given of reconstructing smooth, nonsmooth, and discontinuous initial conditions, including the introduction of a “noise” characteristic, typical of additional conditions of inverse problems, and its smoothing using the Savitzky–Golay filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications (Dunod, Paris, 1967; Mir, Moscow, 1970).

    MATH  Google Scholar 

  2. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  3. V. K. Ivanov, V. V. Vasin„ and V. P. Tanana, Theory of Linear Ill-Posed Problems and Applications (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  4. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  5. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (Editorial URSS, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  6. S. I. Kabanikhin, Inverse and Ill-Posed Problems (Sib. Nauchn. Izd., Novosibirsk, 2009) [in Russian].

    Google Scholar 

  7. M. N. Özisik and R. B. Helcio, Inverse Heat Transfer. Fundamentals and Applications (Routledge, New York, 2020).

    Google Scholar 

  8. D. Lesnic, Inverse Problems with Applications in Science and Engineering (Chapman and Hall/CRC, Boca Raton, 2021).

    Book  MATH  Google Scholar 

  9. Z. Zhao and Z. Meng, “A modified Tikhonov regularization method for a backward heat equation,” Inverse Probl. Sci. Eng. 19 (8), 1175–1182 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Cheng, Y. J. Ma, and C. L. Fu, “A regularization method for solving the radially symmetric backward heat conduction problem,” Appl. Math. Lett. 30, 38–43 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. D. Su, “A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem,” Appl. Math. Comput. 354, 232–247 (2019).

    MathSciNet  MATH  Google Scholar 

  12. S. I. Kabanikhin and G. B. Bakanov, “The optimizational method for solving the discrete inverse problem for hyperbolic equation,” J. Inverse Ill-Posed Probl. 4 (6), 513–530 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. I. Kabanikhin and G. B. Bakanov, “The optimization method for solving a discrete inverse problem for a hyperbolic equation,” Dokl. Math. 58 (1), 32–35 (1998).

    MATH  Google Scholar 

  14. A. L. Karchevsky, “Finite-difference coefficient inverse problem and properties of the misfit functional,” J. Inverse Ill-Posed Probl. 6 (5), 431–452 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. L. Karchevsky, “Correct scheme of actions for the numerical solution of the inverse problem by the optimization method,” Sib. Zh. Vychisl. Mat. 11 (2), 139–149 (2008).

    MathSciNet  MATH  Google Scholar 

  16. A. A. Samarskii, P. N. Vabishchevich, and V. I. Vasil’ev, “Iterative solution of the retrospective inverse problem of heat conduction,” Mat. Model. 9 (5), 119–127 (1997).

    MathSciNet  MATH  Google Scholar 

  17. V. I. Vasil’ev, A. M. Kardashevskii, and P. V. Sivtsev, “Computational experiment on the numerical solution of some inverse problems of mathematical physics,” IOP Conf. Ser. Mater. Sci. Eng. 158 (1), 012093 (2016).

    Article  Google Scholar 

  18. V. I. Vasil’ev, M. V. Vasilyeva, and A. M. Kardashevsky, “The numerical solution of the boundary inverse problem for a parabolic equation,” AIP Conf. Proc. 1773, 110011 (2016).

    Google Scholar 

  19. V. I. Vasil’ev and A. M. Kardashevskii, “Iterative solution of the retrospective inverse problem for a parabolic equation using the conjugate gradient method,” Lect. Notes Comput. Sci. 10187, 698–705 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. A. Prokop’ev, V. I. Vasil’ev, A. M. Kardashevsky, and P. V. Sivtsev, “Numerical solution of the inverse Cauchy problem for an elliptic equation,” Sib. Elektron. Mat. Izv. 14, 308–316 (2017).

    MathSciNet  MATH  Google Scholar 

  21. J. Huang, A. Li, V. I. Vasil’ev, A. M. Kardashevsky, and L. Su, “A numerical method for solving retrospective inverse problem of fractional parabolic equation,” J. Comput. Appl. Math. 413, 114366 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. I. Vasil’ev and A. M. Kardashevskii, “Numerical solution of the retrospective inverse problem of heat conduction with the help of the Poisson integral,” J. Appl. Ind. Math. 12 (3), 577–586 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. N. Vabishchevich and V. I. Vasil’ev, “Computational determination of the lowest order coefficient in a parabolic equation,” Dokl. Math. 89 (2), 179–181 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. P. N. Vabishchevich, V. I. Vasil’ev, and M. V. Vasil’eva, “Computational identification of the right-hand side of a parabolic equation,” Comput. Math. Math. Phys. 55 (6), 1015–1021 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. N. Vabishchevich and V. I. Vasil’ev, “Computational algorithms for solving the coefficient inverse problem for parabolic equations,” Inverse Probl. Sci. Eng. 24 (1), 42–59 (2016).

    Article  MathSciNet  Google Scholar 

  26. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  27. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36 (8), 1627–1639 (1964).

    Article  Google Scholar 

  28. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  29. P. N. Vabishchevich, Numerical Methods for Solving Nonstationary Problems (Lenand, Moscow, 2021) [in Russian].

    Google Scholar 

  30. G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state order, project no. FSRG-2021-0015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Vasil’ev, A. M. Kardashevsky or V. V. Popov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, V.I., Kardashevsky, A.M. & Popov, V.V. Iterative Solution of a Retrospective Inverse Heat Conduction Problem with Inhomogeneous Dirichlet Boundary Conditions. J. Appl. Ind. Math. 16, 841–852 (2022). https://doi.org/10.1134/S1990478922040238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922040238

Keywords

Navigation