Skip to main content
Log in

On the Existence of Viscosity Solutions of Anisotropic Parabolic Equations with Time-Dependent Anisotropy Exponents

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider the Cauchy–Dirichlet problem for an anisotropic parabolic equation with a gradient term that does not satisfy the Bernstein–Nagumo condition. The existence and uniqueness of a viscosity solution of this problem is proved. This solution is Hölder continuous in time and Lipschitz continuous in the spatial variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. E. Acerbi and G. Mingione, “Regularity results for stationary electro-rheological fluids,” Arch. Ration. Mech. Anal. 164 , 213–259 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheological viscous flows,” Ann. Univ. Ferrara. Sez. VII Sci. Math. 52 , 19–36 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Rajagopal and M. Ružička, “Mathematical modelling of electro-rheological fluids,” Contin. Mech. Thermodyn. 13 , 59–78 (2001).

    Article  MATH  Google Scholar 

  4. M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 2000).

  5. R. Aboulaicha, D. Meskinea, and A. Souissia, “New diffusion models in image processing,” Comput. Math. Appl. 56 , 874–882 (2008).

    Article  MathSciNet  Google Scholar 

  6. Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration,” SIAM J. Appl. Math. 66 , 1383–1406 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, vol. 4 of Atlantis Studies in Differential Equations (Atlantis Press, 2015).

  8. M. Belloni and B. Kawohl, “The pseudo- \( p \)-Laplace eigenvalue problem and viscosity solutions as \( p\to \infty \),” ESAIM: Control Optim. Calc. Variations 10 , 28–52 (2004).

    MathSciNet  MATH  Google Scholar 

  9. I. Birindelli and F. Demengel, “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci’s operators,” J. Elliptic Parabolic Equ. 2 , 171–187 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Demengel, “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo \( p \)-Laplacian equation,” Adv. Differ. Equ. 21 (3/4), 373–400 (2016).

    MathSciNet  MATH  Google Scholar 

  11. P. Juutinen, “On the definition of viscosity solutions for parabolic equations,” Proc. Am. Math. Soc. 129 (10), 2907–2911 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ar. S. Tersenov, “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations,” Arch. Math. 45 (1), 19–35 (2009).

    MathSciNet  MATH  Google Scholar 

  13. P. Juutinen, P. Lindqvist, and J. J. Manfredi, “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation,” SIAM J. Math. Anal. 33 (3), 699–717 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Siltakoski, “Equivalence of viscosity and weak solutions for a \( p \)-parabolic equation,” J. Evol. Equ. 21 , 2047–2080 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Zhan, “On solutions of a parabolic equation with nonstandard growth condition,” J. Funct. Spaces 2020 (9397620), 1–10 (2020).

    MathSciNet  MATH  Google Scholar 

  16. M. Bendahmane and K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in \( \mathbb {R}^N \) with advection and lower order terms and locally integrable data,” Potential Anal. 22 , 207–227 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Dall’Aglio, D. Giachetti, and S. Segura de Leon, “Global existence for parabolic problems involving the \( p \)-Laplacian and a critical gradient term,” Indiana Univ. Math. J. 58 (1), 1–48 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. D. G. Figueiredo, J. Sanchez, and P. Ubilla, “Quasilinear equations with dependence on the gradient,” Nonlinear Anal. 71 , 4862–4868 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Fu and N. Pan, “Existence of solutions for nonlinear parabolic problem with \( p(x) \)-growth,” J. Math. Anal. Appl. 362 , 313–326 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Iturriaga, S. Lorca, and J. Sanchez, “Existence and multiplicity results for the \( p \)-Laplacian with a \( p \)-gradient term,” Nonlinear Differ. Equ. Appl. 15 , 729–743 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Li, J. Li, and Y. Ke, “Existence of positive solutions for the \( p \)-Laplacian with \( p \)-gradient term,” J. Math. Anal. Appl. 383 , 147–158 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Nakao and C. Chen, “Global existence and gradient estimates for the quasilinear parabolic equations of \( m \)-Laplacian type with a nonlinear convection term,” J. Differ. Equ. 162 , 224–250 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Zhan, “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable,” Adv. Differ. Equ. 2019 (27), 1–26 (2019).

    MathSciNet  MATH  Google Scholar 

  24. J. Zhao, “Existence and nonexistence of solutions for \( u_t=\mathrm {div}\thinspace (|\nabla u|^{p-2}\nabla u)+f(\nabla u, u,x,t) \),” J. Math. Anal. Appl. 172 (1), 130–146 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Bogelein, F. Duzaar, and P. Marcellini, “Parabolic equations with \( p,q \)-growth,” J. Math. Pures Appl. 100 , 535–563 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  26. Al. S. Tersenov and Ar. S. Tersenov, “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term,” J. Math. Anal. Appl. 480 (1233860), 18 (2019).

    MathSciNet  MATH  Google Scholar 

  27. Ar. S. Tersenov, “Solvability of the Dirichlet problem for anisotropic parabolic equations in nonconvex domains,” Sib. Zh. Ind. Mat. 25 (1), 131–146 (2022) [J. Appl. Ind. Math. 16 (1), 156–167 (2022)].

    Article  MathSciNet  Google Scholar 

  28. Al. S. Tersenov and Ar. S. Tersenov, “On quasilinear anisotropic parabolic equations with time-dependent exponents,” Sib. Mat. Zh. 61 (3), 201–223 (2020) [Sib. Math. J. 61 (1), 159–177 (2020)].

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Wang, “On the regularity theory of fully nonlinear parabolic equation I,” Commun. Pure Appl. Math. 45 , 27–76 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Crandall, H. Ishii, and P.-L. Lions, “User’s guide to viscosity solutions of second order partial differential equations,” Bull. AMS. 27 (1), 1–67 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  31. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  32. B. H. Gilding, “Hölder continuity of solutions of parabolic equations,” J. London Math. Soc. 13 (1), 103–106 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. N. Kruzhkov, “Quasilinear parabolic equations and systems with two independent variables,” in Topics in Modern Math. (Consultant Bureau, New York, 1985).

  34. H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s,” Commun. Pure Appl. Math. 42 , 14–45 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Ishii and P.-L. Lions, “Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,” J. Differ. Equ. 83 , 26–78 (1990).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state order for the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ar. S. Tersenov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tersenov, A.S. On the Existence of Viscosity Solutions of Anisotropic Parabolic Equations with Time-Dependent Anisotropy Exponents. J. Appl. Ind. Math. 16, 821–833 (2022). https://doi.org/10.1134/S1990478922040214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922040214

Keywords

Navigation