Skip to main content
Log in

Contact Bending Problem for a Multilayer Composite Plate with Allowance for Different Moduli of Elasticity in Tension and Compression

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The paper considers the contact bending problem for a multilayer composite plate. Each layer of the composite is a material reinforced with thin parallel fibers. The mathematical model is constructed based on the assumptions of the existence of a neutral surface in the plate and the validity of Kirchhoff’s hypotheses. Using the Lagrange variational principle, we obtain a bending equation generalizing the Sophie Germain equation. An elastic energy functional taking into account the different resistance of the material to tension and compression is obtained. The contact problem of plate bending with the aid of a rigid die is considered. To solve the contact problem of plate bending by a rigid die, a Lagrangian with an inequality constraint is constructed. The finite element method using a triangular Bell element is applied for the numerical solution of the problem. The results of calculations for the bending of laminated rectangular plates with various directions of fiber laying and various die shapes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. S. A. Ambartsumyan and A. A. Khachatryan, “To multimodulus elasticity theory,” Izv. Akad. Nauk SSSR. Mekh. Tverdogo Tela (6), 64–67 (1966).

  2. N. M. Matchenko and L. A. Tolokonnikov, “About the relationship between stresses and strains in isotropic media of different modulus,” Izv. Akad. Nauk SSSR. Mekh. Tverdogo Tela (6), 108–111 (1968).

  3. A. S. Kravchuk, V. P. Maiboroda, and Yu. S. Urzhumtsev, Mechanics of Polymer Composite Materials. Experimental and Numerical Methods (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  4. D. E. Bessonov, Yu. P. Zezin, and E. V. Lomakin, “Differential resistance of granular composites based on unsaturated polyesters,” Izv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inf. 9 (4(2)), 9–13 (2009).

    Google Scholar 

  5. M. Meng, H. R. Le, M. J. Rizvi, and S. M. Grove, “The effects of unequal compressive/tensile moduli of composites,” Compos. Struct. 126 , 207–215 (2015).

    Article  Google Scholar 

  6. S. A. Ambartsumyan, Heteromodular Elasticity Theory (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  7. J. Y. Sun, S. Xia, M. W. Xia, K. H. Oh, and K. S. Kim, “Folding wrinkles of a thin stiff layer on a soft substrate,” Proc. R. Soc. A: Math., Phys. Eng. Sci. 468 (2140), 932–953 (2012).

    Article  Google Scholar 

  8. K. I. Ipatov, A. S. Vasil’ev, and V. L. Zemlyak, “Study of the effect of surface reinforcement on the bearing capacity of ice,” Vychisl. Mekh. Sploshnykh Sred 12 (1), 98–105 (2019).

    Google Scholar 

  9. O. V. Yakimenko and V. V. Sirotyuk, Strengthening of Ice Crossings with Geosynthetic Materials: A Monograph (Izd. SibADI, Omsk, 2015) [in Russian].

    Google Scholar 

  10. B. D. Annin, V. M. Sadovskii, I. E. Petrakov, and A. Yu. Vlasov, “Strong bending of a beam from a fibrous composite, differently resistant to tension and compression,” J. Sib. Fed. Univ. Math. Phys. 12 (5), 533–542 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. P. Patel, K. Khan, and Y. Nath, “A new constitutive model for bimodular laminated structures: Application to free vibrations of conical/cylindrical panels,” Compos. Struct. 110 , 183–191 (2014).

    Article  Google Scholar 

  12. X. He, J. Sun, Z. Wang, Q. Chen, and Z. Zheng, “General perturbation solution of large-deflection circular plate with different moduli in tension and compression under various edge conditions,” Intern. J. Nonlinear Mech. 55 , 110–119 (2013).

    Article  Google Scholar 

  13. P. Rosakis, J. Notbohm, and G. Ravichandran, “A model for compression-weakening materials and the elastic fields due to contractile cells,” J. Mech. Phys. Solids 85 , 16–32 (2015).

    Article  MathSciNet  Google Scholar 

  14. H. T. Yang and B. Wang, “An analysis of longitudinal vibration of bimodular rod via smoothing function approach,” J. Sound Vib. 317 , 419–431 (2008).

    Article  Google Scholar 

  15. L. Zhang, Q. Gao, and H. W. Zhang, “An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures,” Int. J. Mech. Sci. 70 , 57–68 (2013).

    Article  Google Scholar 

  16. L. Zhang, K. J. Dong, H. T. Zhang, and B. Yan, “A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials,” Finite Elem. Anal. Des. 110 , 20–31 (2015).

    Article  Google Scholar 

  17. V. M. Sadovskii, O. V. Sadovskaya, and I. E. Petrakov, “On the theory of constitutive equations for composites with different resistance in compression and tension,” Compos. Struct. 268 , 113921 (2021).

    Article  Google Scholar 

  18. I. E. Petrakov, V. M. Sadovskii, and O. V. Sadovskaya, “Analysis of bending of composite plates with account for the difference in resistance to tension and compression,” Prikl. Mat. Tekh. Fiz. 62 (5), 172–183 (2021) [J. Appl. Mech. Tech. Phys. 62 (5), 851–860 (2021)].

    Article  MathSciNet  MATH  Google Scholar 

  19. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  20. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam–Oxford, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  21. S. Pissanetzky, Sparse Matrix Technology (Academic Press, London–New York, 1984; Mir, Moscow, 1988).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-31-90032, and the Krasnoyarsk Mathematical Center under agreement no. 075-02-2022-873 with the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Petrakov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrakov, I.E. Contact Bending Problem for a Multilayer Composite Plate with Allowance for Different Moduli of Elasticity in Tension and Compression. J. Appl. Ind. Math. 16, 751–759 (2022). https://doi.org/10.1134/S1990478922040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922040159

Keywords

Navigation