Skip to main content
Log in

Numerical Simulation of T-Lymphocyte Population Dynamics in a Lymph Node

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

A mathematical model is presented that describes the dynamics of the population of CD4 \( ^{+} \) T-lymphocytes in a single lymph node. The model is based on a high-dimensional system of nonlinear delay differential equations supplemented with initial data. The equations of the model are given, and their well-posedness is investigated. The results of computational experiments with the model illustrating the characteristic cell population dynamics under the conditions of antigen-specific stimulation of the cell reproduction process for cells of various types are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. T. Luzyanina, S. Mrusek, J. T. Edwards, D. Roose, S. Ehl, and G. Bocharov, “Computational analysis of CFSE proliferation assay,” J. Math. Biol. 54 , 57–89 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Luzyanina, J. Cupovic, B. Ludewig, and G. Bocharov, “Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division,” J. Math. Biol. 69 , 1547–1583 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, and V. Volpert, “Spatiotemporal dynamics of virus infection spreading in tissues,” PLoS ONE 11 (12), e0168576– (2016). https://doi.org/10.1371/journal.pone.0168576

  4. G. I. Marchuk, Mathematical Models in Immunology: Computational Methods and Experiments (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  5. K. A. Pawelek, S. Liu, F. Pahlevani, and F. L. Rong, “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data,” Math. Biosci. 235 (1), 98–109 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Nakaoka, S. Iwami, and K. Sato, “Dynamics of HIV infection in lymphoid tissue network,” J. Math. Biol. 72 , 909–938 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Pertsev, K. Loginov, and G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays,” Discrete Contin. Dyn. Syst. Ser. S. 13 (9), 2365–2384 (2020).

    MathSciNet  MATH  Google Scholar 

  8. N. V. Pertsev, “Global solvability and estimates of solutions to the Cauchy problem for the retarded functional differential equations that are used to model living systems,” Sib. Mat. Zh. 59 (1), 143–157 (2018) [Sib. Math. J. 59 (1), 113–125 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Cosgrove, L. S. P. Hustin, R. J. de Boer, and L. Perie, “Hematopoiesis in numbers,” Trends Immunol. 42 (12), 1100–1112 (2021).

    Article  Google Scholar 

  10. A. T. Haase, “Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues,” Annu. Rev. Immunol. 17 (12), 625–656 (1999).

    Article  Google Scholar 

  11. R. M. Zinkernagel, Grundlagen der Immunologie (Georg Thieme, Berlin, 2005; Mir, Moscow, 2008).

    Google Scholar 

  12. A. A. Yarilin, Immunology (GEOTAR-MEDIA, Moscow, 2010) [in Russian].

    Google Scholar 

  13. T. Hapuarachchi, J. Lewis, and R. E. Callard, “A mechanistic model for naive CD4 T cell homeostasis in healthy adults and children,” Front Immunol. 4 , 366 (2013).

    Article  Google Scholar 

  14. R. Sender and R. Milo, “The distribution of cellular turnover in the human body,” Nat. Med. 27 (1), 45–48 (2021).

    Article  Google Scholar 

  15. N. Vrisekoop, J. Drylewicz, R. Van Gent, T. Mugwagwa, S. F. Van Lelyveld, E. Veel, S. A. Otto, M. T. Ackermans, J. N. Vermeulen, H. H. Huidekoper, J. M. Prins, F. Miedema, R. J. de Boer, K. Tesselaar, and J. A. Borghans, “Quantification of naive and memory T-cell turnover during HIV-1 infection,” AIDS 29 (16), 2071–2080 (2015).

    Article  Google Scholar 

  16. M. C. Hunter, A. Teijeira, and C. Halin, “T-cell trafficking through lymphatic vessels,” Front. Immunol. 7 , 613 (2016).

    Article  Google Scholar 

Download references

Funding

This work was supported financially by a grant from the Russian Science Foundation, project no. 18-11-00171, and with partial financial support from the Moscow Center for Fundamental and Applied Mathematics, agreement with the Ministry of Education and Science of the Russian Federation no. 075-15-2022-286.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Pertsev, G. A. Bocharov or K. K. Loginov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pertsev, N.V., Bocharov, G.A. & Loginov, K.K. Numerical Simulation of T-Lymphocyte Population Dynamics in a Lymph Node. J. Appl. Ind. Math. 16, 737–750 (2022). https://doi.org/10.1134/S1990478922040147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922040147

Keywords

Navigation