Skip to main content
Log in

Uniqueness of the Solution of Boundary Value Problems for the Static Equations of Elasticity Theory with a Nonsymmetric Matrix of Elastic Moduli

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We prove the uniqueness of a solution of boundary value problems for the static equations of elasticity theory for Cauchy elastic materials with a nonsymmetric (or symmetric but not necessarily positive definite) matrix of elastic moduli. Using eigenstates (eigenbases), we write the linear stress-strain relation in invariant form. There are various ways of writing the constitutive relations, including those using symmetric matrices. The specific strain energy for all cases is represented canonically as a positive definite quadratic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. H. G. Hahn, Elastizitätstheorie. Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme (B.G. Teubner, Stuttgart, 1985; Mir, Moscow, 1988).

    MATH  Google Scholar 

  2. K. F. Chernykh, Introduction to Anisotropic Elasticity (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  3. N. I. Ostrosablin, “Symmetry classes of the anisotropy tensors of quasielastic materials and a generalized Kelvin approach,” J. Appl. Mech. Tech. Phys. 58 (3), 469–488 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. N. Rabotnov, Elements of Hereditary Solid Mechanics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  5. T. G. Rogers and A. C. Pipkin, “Asymmetric relaxation and compliance matrices in linear viscoelasticity,” Z. Angew. Math. Phys. 14 (4), 334–343 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  6. I. S. Zheludev, Symmetry and Applications (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  7. V. V. Mokryakov, “Study of the dependence of effective compliances of a plane with an array of circular holes on array parameters,” Vychisl. Mekh. Sploshnykh Sred 3 (3), 90–101 (2010).

    MathSciNet  Google Scholar 

  8. S. Y. Lavrent’ev, V. V. Mokryakov, and A. V. Chentsov, “Effective elastic moduli of perforated plates containing a rectangular lattice of circular holes,” Mech. Solids 56 (3), 296–300 (2021).

    Article  Google Scholar 

  9. V. O. Bytev, I. V. Slezko, and D. E. Nikolaev, “Exact solutions of some problems of the planar nonsymmetric theory of elasticity,” Vestn. Tyumen. Gos. Univ. (5), 32–43 (2007).

  10. V. O. Bytev and I. V. Slezko, “Solving problems of nonsymmetric elasticity,” Vestn. Samarsk. Gos. Univ. Estestvennonauchn. Ser. (6), 238–243 (2008).

  11. N. I. Ostrosablin, “General solution for the two-dimensional system of static Lame’s equations with an asymmetric elasticity matrix,” Sib. Zh. Ind. Mat. 21 (1), 61–71 (2018) [J. Appl. Ind. Math. 12 (1), 126–135 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  12. V. K. Andreev, V. V. Bublik, and V. O. Bytev, Symmetries of Nonclassical Models of Hydrodynamics (Nauka, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  13. P. Podio-Guidugli and E. G. Virga, “Transversely isotropic elasticity tensors,” Proc. R. Soc. London. Ser. A 411 (1840), 85–93 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. F. Belmetsev and Yu. A. Chirkunov, “Exact solutions to the equations of a dynamic asymmetric pseudoelasticity model,” Sib. Zh. Ind. Mat. 15 (4), 38–50 (2012) [J. Appl. Ind. Math. 7 (1), 41–53 (2013)].

    Article  MathSciNet  Google Scholar 

  15. G. Geymonat and P. Gilormini, “On the existence of longitudinal plane waves in general elastic anisotropic media,” J. Elasticity 54 (3), 253–266 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. V. Slezko, “Modeling some processes of nonsymmetric elasticity,” Ext. Abstr. Cand. Sci. (Phys.-Math. Dissertation, Tyumen: Tyumen. Gos. Univ., 2009.

  17. N. F. Belmetsev, “Construction and study of submodels of nonsymmetric and transversally isotropic models of elastic media,” Ext. Abstr. Cand. Sci. (Phys.-Math. Dissertation, Novosibirsk: Sobolev. Inst. Math. Sib. Otd. Russ. Acad. Sci., 2020.

  18. Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  19. W. Nowacki, Teoria sprȩűystości (Państw. Wydawnictvo Nauk., Warsaw, 1970; Mir, Moscow, 1975).

    Google Scholar 

  20. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  21. N. V. Efimov and E. R. Rozendorn, Linear Algebra and High-Dimensional Geometry (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  22. S. K. Godunov, Elements of Continuum Mechanics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The article was written at the suggestion of Acad. B.D. Annin. The author thanks B.D. Annin and R.I. Ugryumov for useful discussions.

Funding

The work was carried out within the framework of the Program of Fundamental Research of the Siberian Branch of the Russian Academy of Sciences, project no. 2.3.1.3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Ostrosablin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrosablin, N.I. Uniqueness of the Solution of Boundary Value Problems for the Static Equations of Elasticity Theory with a Nonsymmetric Matrix of Elastic Moduli. J. Appl. Ind. Math. 16, 713–719 (2022). https://doi.org/10.1134/S1990478922040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922040123

Keywords

Navigation