Skip to main content
Log in

Taking into Account the Generalized Derivative and the Collective Influence of Phases on the Homogenization Process

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The effective transfer coefficients of a heterogeneous medium are obtained based on the formalism of a generalized derivative, which reflects the internal boundaries of a heterogeneous medium. The formula for the generalized derivative is a consequence of applying the variational apparatus to the energy functional for a heterogeneous medium, taking into account the indicator function characterizing the phase at a point. The solution is sought for the homogenized Green’s function based on the modified operator obtained, and the homogenization is carried out. Based on an analysis of an integro-differential equation with discontinuities and the introduced hypotheses, the solution has the form of a Yukawa potential that characterizes the transition layer caused by charge screening from the physical point of view. This potential is aimed at expressing the solution of the many-body problem in a heterogeneous medium and reflecting the collective influence of the phases on the field propagating through the system. As a result of the solution found, the effective transport coefficients integrally take into account the microstructure of the system (physical properties of phases and characteristic scales) in an explicit form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. L. P. Khoroshun, “A new mathematical model of the nonuniform deformation of composites,” Mekh. Kompoz. Mater. 31 (3), 310–318 (1995).

    Google Scholar 

  2. L. P. Khoroshun, “Mathematical models and methods of the mechanics of stochastic composites,” Appl. Mech. 30 (10), 30–62 (2000).

    MATH  Google Scholar 

  3. Z. Hashin and S. Shtrikman, “On some variational principles in anisotropic and nonhomogeneous elasticity,” J. Mech. Phys. Solids 10 (4), 335–342 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials,” J. Mech. Phys. Solids 11 (2), 127–140 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Hashin and S. Shtrikman, “Conductivity of polycrystals,” Phys. Rev. 130 (129), 129–133 (1963).

    Article  MATH  Google Scholar 

  6. Z. Hashin and S. Shtrikman, “Variational approach to the theory of elastic behavior of multiphase materials,” J. Mech. Phys. Solids 11 (2), 127–140 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizitätskonstanten und Leitfähigkeiten von Vielrkistallen der nichtregularen Systeme,” Ann. Phys. 417 (25), 645–672 (1936).

    Article  Google Scholar 

  8. E. Kroner, “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls,” Z. Phys. 151 (4), 504–518 (1958).

    Article  Google Scholar 

  9. R. A. Hill, “Self-consistent mechanics of composite materials,” J. Mech. Phys. Solids 13 (4), 213–222 (1965).

    Article  MathSciNet  Google Scholar 

  10. R. M. Christensen, Theory of Viscoelasticity (Academic Press, New York, 1982).

    Google Scholar 

  11. J. Eshelby, Continuum Theory of Dislocations (Academic Press, New York, 1956).

    Google Scholar 

  12. L. P. Khoroshun, “Random functions theory in problems on the macroscopic characteristics of microinhomogeneous media,” Appl. Mech. 14, 3–17 (1978).

    Google Scholar 

  13. L. P. Khoroshun, “Conditional-moment method in problems of the mechanics of composite materials,” Appl. Mech. 23 (10), 100–108 (1987).

    Google Scholar 

  14. V.V. Bolotin and V.N. Moskalenko, “Determination of the elastic constants of a microinhomogeneous medium,” Zh. Prikl. Mekh. Tekh. Fiz. 34 (1), 66–72 (1968).

    Google Scholar 

  15. R. I. Nigmatullin, Fundamentals of the Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  16. N. S. Bakhvalov and G. P. Panasenko, Homogenization of Processes in Periodic Media (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  17. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall. 21, 571–574 (1973).

    Article  Google Scholar 

  18. P. P. Castaneda and J. R. Willis, “The effect of spatial distribution on the effective behavior of composite materials and cracked media,” J. Mech. Phys. Solids 43, 1919–1951 (1995). https://doi.org/10.1016/0022-5096(95)00058-Q

  19. A. Fedotov, “The hybrid homogenization model of elastic anisotropic porous materials,” J. Mater. Sci. 53, 5092–5102 (2018).

    Article  Google Scholar 

  20. A. V. Mishin, “The generalized derivative and its use in the analysis of the microstructure of a heterogeneous medium,” J. Appl. Ind. Math. 15 (4), 631–646 (2021).

    Article  MathSciNet  Google Scholar 

  21. J. Gao et al., “Networks formed from interdependent networks,” Nat. Phys. 8 (1), 40–48 (2012).

  22. X. Huang et al., “Robustness of interdependent networks under targeted attack,” Phys. Rev. E. Stat. Nonlinear Soft Matter Phys. 83 (6), 065101– (2011). https://doi.org/10.1103/PhysRevE.83.065101

  23. J. Gao et al., “Robustness of a network of networks,” Phys. Rev. Lett. 107 (19), 195701 (2011). https://doi.org/10.1103/PhysRevLett.107.195701

  24. L. Schwartz, Méthodes mathématiques pour les sciences physiques (Hermann, Paris, 1961; Mir, Moscow, 1965).

    MATH  Google Scholar 

  25. L. P. Khoroshun, “Elastic properties of materials reinforced with unidirectional short fibers,” Appl. Mech. 8 (10), 1–7 (1972).

    Google Scholar 

Download references

Funding

The work was supported financially by the Ministry of Education and Science of the Russian Federation, project no. 075-15-2020-781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mishin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishin, A.V. Taking into Account the Generalized Derivative and the Collective Influence of Phases on the Homogenization Process. J. Appl. Ind. Math. 16, 684–694 (2022). https://doi.org/10.1134/S1990478922040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922040093

Keywords

Navigation