Skip to main content
Log in

Numerical Simulation of the Propagation of Tungsten Vapor above a Heated Surface

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The article presents numerical simulation results for the problem of tungsten vapor propagation after its evaporating from a surface heated with a high-speed electron beam. The model is based on solving the system of gas dynamics equations written in divergence form. The resulting system of equations is implemented via the Belotserkovskii large-particle method. The density and vapor temperature distributions are obtained for a surface heated up to a temperature of 8000 K. Calculations show that the normal temperature distribution on the specimen surface results in a noticeably spherical shape of the gas exit front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Vyacheslavov, A. Arakcheev, A. Burdakov, I. Kandaurov, A. Kasatov, V. Kurkuchekov, K. Mekler, V. Popov, A. Shoshin, D. Skovorodin, Y. Trunev, and A. Vasilyev, “Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads,” AIP Conf. Proc. 1771, 060004– (2016). https://doi.org/10.1063/1.4964212

  2. G. G. Lazareva, A. S. Arakcheev, V. A. Popov, and A. G. Maksimova, “Estimation of the change in the gas flow rate from the surface of a tungsten plate under pulsed heat load,” J. Phys. Conf. Ser. (IOP) 1336, 012011– (2019). https://doi.org/10.1088/1742-6596/1336/1/012011

  3. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Questions of Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  4. G. G. Lazareva, I. P. Oksogoeva, V. A. Popov, I. V. Schwab, V. L. Vaskevich, A. G. Maksimova, N. E. Ivashin, A. S. Arakcheev, and A. V. Burdakov, “Mathematical simulation of the distribution of the electron beam current during pulsed heating of a metal target,” Sib. Zh. Ind. Mat. 24 (2(86)), 97–108 (2021) [J. Appl. Ind. Math. 15 (2), 292–301 (2021)]. https://doi.org/10.1134/S1990478921020101

  5. A. S. Arakcheev, D. E. Apushkinskaya, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, G. G. Lazareva, A. G. Maksimova, V. A. Popov, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, and L. N. Vyacheslavov, “Two-dimensional numerical simulation of tungsten melting under pulsed electron beam,” Fusion Eng. Des. 132, 13–17 (2018). https://doi.org/10.1016/j.fusengdes.2018.05.008

  6. L. G. Loitsyanskii, Fluid and Gas Mechanics (Drofa, Moscow, 2003) [in Russian].

    Google Scholar 

  7. S. K. Godunov, S. P. Kiselev, I. M. Kulikov, and V. I. Mali, Modeling of Shock-Wave Processes in Elastoplastic Materials at Various (Atomic, Meso, and Thermodynamic) Structural Levels (Inst. Komp’yut. Issled., Izhevsk, 2014) [in Russian].

    Google Scholar 

  8. I. M. Kulikov, “Mathematical modeling of three-dimensional hydrodynamic processes in a self-consistent gravitational field on a supercomputer,” Doctoral Dissertation, Novosibirsk (2016).

  9. O. M. Belotserkovskii and Yu. M. Davydov, Large-Particle Method in Gas Dynamics. A Computational Experiment (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  10. O. M. Belotserkovskii and Yu. M. Davydov, Method of “Large Particles” (Schemes and Applications) (Mosk. Fiz.-Tekh. Inst., Moscow, 1978) [in Russian].

    Google Scholar 

  11. O. M. Belotserkovskii and Yu. M. Davydov, Nonstationary Method of “Large Particles” for Solving Problems of Exterior Aerodynamics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1970) [in Russian].

    Google Scholar 

  12. A. S. Arakcheev, G. G. Lazareva, A. G. Maksimova, V. A. Popov, and N. E. Ivashin, “Calculation of the expansion dynamics of evaporated tungsten under the action of a laser pulse,” J. Phys. Conf. Ser. 1640 (012007), 1–8 (2020). https://doi.org/10.1088/1742-6596/1640/1/012007

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-31-90092.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. G. Lazareva or A. G. Maksimova.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazareva, G.G., Maksimova, A.G. Numerical Simulation of the Propagation of Tungsten Vapor above a Heated Surface. J. Appl. Ind. Math. 16, 472–480 (2022). https://doi.org/10.1134/S1990478922030115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922030115

Keywords

Navigation