Skip to main content
Log in

Van der Pol Oscillator under Random Noise

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The first approximations are found to the expectation and the dispersion function of the solution for a mathematical model of an oscillator in the form of a differential equation perturbed by random noise with a small parameter. It is assumed that the perturbations are of random nature without assuming them to be generated by white noise. Resonance conditions for the expectation of the solution are obtained for the harmonic mean value of the perturbing random noise. A new fact is established: the dispersion function increases with increasing time (dispersion resonance) if five algebraic equalities are not satisfied for the moment functions of the random perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. van der Pol, “On a type of oscillation hysteresis in a simple triode generator,” Philos. Mag. (43), 177–193 (1922).

  2. B. van der Pol, “On oscillation hysteresis in a simple triode generator,” Philos. Mag. (43), 700–719 (1926).

  3. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Oscillation Theory (Fizmatlit, Moscow, 1959) [in Russian].

    MATH  Google Scholar 

  4. N. N. Bogolyubov and Yu. A. Mitropolskii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  5. Yu. A. Mitropolskii, Averaging Method in Nonlinear Mechanics (Nauk. Dumka, Kiev, 1971) [in Russian].

    Google Scholar 

  6. W. Boyce, E. Boyce, E. Richard, and C. Diprima, Elementary Differential Equations and Boundary Value Problems (John Wiley and Sons, Chichester, 2005).

    MATH  Google Scholar 

  7. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  8. P. S. Landa, Self-Oscillatory Systems with a Finite Number of Degrees of Freedom (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  9. A. H. Nayfeh, Perturbation Methods (John Wiley and Sons, New York, 1973; Mir, Moscow, 1976).

    MATH  Google Scholar 

  10. V. I. Tikhonov, “Impact of fluctuations on the simplest parametric systems,” Avtom. Telemekh. 19, 717–723 (1958).

    Google Scholar 

  11. V. I. Tikhonov, Statistical Radio Engineering (Sov. Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  12. G. Adomian, Stochastic Systems (Academic Press, New York, 1983).

    MATH  Google Scholar 

  13. V. G. Zadorozhnii, Variational Analysis Methods (RKhD, Izhevsk, 2006) [in Russian].

    Google Scholar 

  14. R. L. Stratonovich, Selected Questions of the Theory of Fluctuations in Radio Engineering (Sov. Radio, Moscow, 1961) [in Russian].

    Google Scholar 

  15. M. A. Yakunin, “Numerical analysis of the stochastic van der Pol oscillator,” in “Marchukovskie chteniya—2019. Proc. Int. Conf. “Actual Problems of Computational and Applied Mathematics” (Novosibirsk, July 1–5, 2019), pp 564–570.

  16. S. S. Guo and G. K. Er, “The probability solution of stochastic oscillators with even nonlinearity under Poisson excitation,” Centr. Eur. J. Phys. 10 (3), 702–707 (2012).

    Google Scholar 

  17. G. K. Er, H. T. Zhu, V. P. In, and K. P. Kon, “PDF solution of nonlinear oscillators subject to multiplicative Poisson pulse excitation on displacement,” Nonlinear Dyn. 55 (4), 337–348 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. S. Artem’ev and M. A. Yakunin, “Parametric analysis of the oscillatory solutions to stochastic differential equations with the Wiener and Poisson components by the Monte Carlo method,” Sib. Zh. Ind. Mat. 20 (2), 3–14 (2017) [J. Appl. Ind. Math. 11 (2), 157–167 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  19. Maha Hamed, I. L. El-Kalla, M. A. El-Beltagy, and B. S. El-Desouky, “Solution of stochastic van der Pol equation using spectral decomposition techniques,” Appl. Math. 11 (3), 87–95 (2020).

    Google Scholar 

  20. N. D. Anh, V. L. Zakovorotny, and D. N. Hao, “Response analysis of van der Pol oscillator subjected to harmonic and random excitations,” Probab. Eng. Mech. 37, 51–59 (2014).

    Article  Google Scholar 

  21. L. Zhou and F. Chen, “Chaotic motions of the Duffing–van der Pol oscillator with external and parametric excitations,” Shock Vib. 1, 143–148 (2014).

    Google Scholar 

  22. Y. Li, Z. Wu, Z. Guoqi, W. Feng, and W. Yuancen, “Stochastic \( P \)-bifurcation in bistable van der Pol oscillator with fractional time-delay feedback under Gaussian white noise excitation,” Adv. Differ. Equat. (448), 53–69 (2019).

  23. A. V. Borovskikh and A. I. Perov, Differential Equations. Part 1 (Yurait, Moscow, 2016) [in Russian].

    Google Scholar 

  24. B. P. Demidovich, Lectures on the Mathematical Theory of Stability (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Prof. V.G. Zadorozhnii, who predicted the dispersion resonance phenomenon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kuptsova.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuptsova, E.V. Van der Pol Oscillator under Random Noise. J. Appl. Ind. Math. 16, 449–459 (2022). https://doi.org/10.1134/S1990478922030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922030097

Keywords

Navigation