Skip to main content
Log in

Localization of the Discontinuity Lines of the Bottom Scattering Coefficient According to Acoustic Sounding Data

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The paper considers the mathematical problems of constructing sonar images of the seabed from the data of measurements of a multibeam side-scan sonar. For the nonstationary radiative transfer equation describing the process of acoustic sounding in the ocean, we investigate the inverse problem of finding the discontinuity lines of the bottom scattering coefficient. A numerical algorithm for solving the inverse problem is developed, and the analysis of the quality of localization of the boundaries of inhomogeneities of the seabed depending on the number of angles and the sounding range is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Ishimaru, Wave Propagation and Scattering inRandom Media (Academic Press, New York, 1978).

    MATH  Google Scholar 

  2. J. A. Turner and R. L. Weaver, “Radiative transfer of ultrasound,” J. Acoust. Soc. Am. 96 (6), 3654–3674 (1994).

    Article  Google Scholar 

  3. V. I. Mendus and G. A. Postnov, “On the angular distribution of high-frequency dynamic ocean noise,” Akoust. Zh. 39 (6), 1107–1116 (1993).

    Google Scholar 

  4. G. Bal, “Kinetics of scalar wave fields in random media,” Wave Motion 43, 132–157 (2005).

    Article  MathSciNet  Google Scholar 

  5. J. E. Quijano and L. M. Zurk, “Radiative transfer theory applied to ocean bottom modeling,” J. Acoust. Soc. Am. 126 (4), 1711–1723 (2009).

    Article  Google Scholar 

  6. A. V. Bogorodskii, G. V. Yakovlev, E. A. Kopenin, and A. K. Dolzhikov, Hydroacoustic Technology for Ocean Exploration and Development (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  7. G. Griffiths, Technology and Applications of Autonomous Underwater Vehicles (CRC Press, London, 2002).

  8. Yu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknarya, and E. V. Tutynin, “Ways to improve hydroacoustic technologies for surveying the seabed using autonomous uninhabited underwater vehicles,” Podvodnye Issled. Robototekh. 8 (2), 4–15 (2009).

    Google Scholar 

  9. I. V. Prokhorov, V. V. Zolotarev, and I. B. Agafonov, “The problem of acoustic sounding in a fluctuating ocean,” Dal’nevost. Mat. Zh. 11 (1), 76–87 (2011).

    MathSciNet  MATH  Google Scholar 

  10. I. V. Prokhorov and A. A. Sushchenko, “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory,” Acoust. Phys. 61 (3), 368–375 (2015).

    Article  Google Scholar 

  11. I. V. Prokhorov, A. A. Sushchenko, and A. Kim, “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions,” J. Appl. Ind. Math. 11 (1), 115–124 (2017).

    Article  MathSciNet  Google Scholar 

  12. I. V. Prokhorov and A. A. Sushchenko, “The Cauchy problem for the radiative transfer equation in an unbounded medium,” Dal’nevost. Mat. Zh. 18 (1), 101–111 (2018).

    MATH  Google Scholar 

  13. A. A. Amosov, “Initial–boundary value problem for the non-stationary radiative transfer equation with diffuse reflection and refraction conditions,” J. Math. Sci. 235 (2), 117–137 (2018).

    Article  MathSciNet  Google Scholar 

  14. I. V. Prokhorov, “The Cauchy problem for the radiation transfer equation with Fresnel and Lambert matching conditions,” Math. Notes 105 (1), 80–90 (2019).

    Article  MathSciNet  Google Scholar 

  15. A. Kim and I. V. Prokhorov, “Initial–boundary value problem for a radiative transfer equation with generalized matching conditions,” Sib. Electron. Math. Rep. 16, 1036–1056 (2019).

    MathSciNet  MATH  Google Scholar 

  16. E. O. Kovalenko, A. A. Sushchenko, and I. V. Prokhorov, “Processing of the information from side-scan sonar,” Proc. SPIE 10035, article ID 100352C (2016).

  17. E. O. Kovalenko, A. A. Sushchenko, and V. A. Kan, “Focusing of sonar images as an inverse problem for radiative transfer equation,” Proc. SPIE 10833, article ID 108336D (2018).

  18. E. O. Kovalenko and I. V. Prokhorov, “Determination of the coefficient of bottom scattering during multibeam sounding of the ocean,” Dal’nevost. Mat. Zh. 19 (2), 206–222 (2019).

    MATH  Google Scholar 

  19. E. O. Kovalenko, I. V. Prokhorov, A. A. Sushchenko, and V. A. Kan, “Problem of multibeam remote sensing of sea bottom,” Proc. SPIE 11208, article ID 112085P (2019).

  20. E. Yu. Derevtsov, S. V. Mal’tseva, and I. E. Svetov, “Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform,” J. Appl. Ind. Math. 12 (4), 619–641 (2018).

  21. S. V. Mal’tseva, I. E. Svetov, and A. P. Polyakova, “Reconstruction of a function and its singular support in a cylinder by tomographic data,” Eurasian J. Math. Comput. Appl. 8 (2), 86–97 (2020).

  22. A. Faridani, E. L. Ritman, and K. T. Smith, “Local tomography,” SIAM J. Appl. Math. 52 (2), 459–484 (1992).

  23. A. Faridani, D. V. Finch, E. L. Ritman, and K. T. Smith, “Local tomography. II,” SIAM J. Appl. Math. 57 (4), 1095–1127 (1997).

  24. E. T. Quinto, “Singularities of the \( X \)-ray transform and limited data tomography in \( R^2 \) and \( R^3 \),” SIAM J. Math. Anal. 24, 1215–1225 (1993).

    Article  MathSciNet  Google Scholar 

  25. E. T. Ramm and A. I. Katsevich, The Radon Transform and Local Tomography (CRC Press, Boca Raton, 1996).

    MATH  Google Scholar 

  26. D. S. Anikonov, A. E. Kovtanyuk, and I. V. Prokhorov, Transport Equation and Tomography (VSP, Boston–Utrecht, 2002).

    MATH  Google Scholar 

  27. D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, Poorly Visible Media in \( X \)-Ray Tomography (VSP, Boston–Utrecht, 2002).

    MATH  Google Scholar 

  28. O. V. Filonin, Few-View Tomography (Izd. SNTs Ross. Akad. Nauk, Samara, 2006) [in Russian].

    Google Scholar 

  29. D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, “The problem of single-beam probing of an unknown medium,” J. Appl. Ind. Math. 5 (4), 500–505 (2011).

    Article  MathSciNet  Google Scholar 

  30. D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, “Algorithm of finding a body projection within an absorbing and scattering medium,” J. Inverse Ill-Posed Probl. 18 (8), 885–893 (2011).

    MathSciNet  MATH  Google Scholar 

  31. D. S. Anikonov and V. G. Nazarov, “Problem of two-beam tomography,” Comput. Math. Math. Phys. 52 (3), 315–320 (2012).

    Article  MathSciNet  Google Scholar 

  32. D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, “An integrodifferential indicator for the problem of single beam tomography,” J. Appl. Ind. Math. 8 (3), 301–306 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 20-01-00173, and the Russian Ministry of Education and Science, projects nos. 075-01095-20-00 and 075-02-2020-1482-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. O. Kovalenko or I. V. Prokhorov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, E.O., Prokhorov, I.V. Localization of the Discontinuity Lines of the Bottom Scattering Coefficient According to Acoustic Sounding Data. J. Appl. Ind. Math. 16, 70–79 (2022). https://doi.org/10.1134/S1990478922010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922010069

Keywords

Navigation