Skip to main content
Log in

Problem of Determining the Two-Dimensional Kernel of the Viscoelasticity Equation with a Weakly Horizontal Inhomogeneity

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

In a domain bounded with respect to the variable \( z \) and having a weakly horizontal inhomogeneity, we consider the problem of determining the convolution kernel \( k(t,x) \), \( t\in [0,T] \), \( x\in {\mathbb R} \), occurring in the viscoelasticity equation. It is assumed that this kernel weakly depends on the variable \( x \) and has a power series expansion in a small parameter \( \varepsilon \). A method is constructed for finding the first two coefficients \( k_{0}(t) \) and \( k_{1 }(t) \) of this expansion. Theorems on the global unique solvability of the problem are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation,” Nonlinear Anal. Theory Meth. & Appl. 22 (1), 21–44 (1994).

    Article  MathSciNet  Google Scholar 

  2. J. Janno and L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity,” Math. Meth. Appl. Sci. 20 (4), 291–314 (1997).

    Article  MathSciNet  Google Scholar 

  3. D. K. Durdiev and Zh. D. Totieva, “The problem of determining the one-dimensional kernels of the viscoelasticity equation,” Sib. Zh. Ind. Mat. 16 (2), 72–82 (2013).

    MathSciNet  MATH  Google Scholar 

  4. D. K. Durdiev and Zh. Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain,” Math. Notes 97 (6), 867–877 (2015).

    Article  MathSciNet  Google Scholar 

  5. D. K. Durdiev and A. A. Rahmonov, “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: global solvability,” Theor.Math. Phys. 195 (3), 923–937 (2018).

  6. D. K. Durdiev and Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations,” Math. Meth. Appl. Sci. 41 (17), 8019–8032 (2018).

    Article  MathSciNet  Google Scholar 

  7. Z. D. Totieva and D. K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation,” Math. Notes. 103 (1–2), 118–132 (2018).

    Article  MathSciNet  Google Scholar 

  8. Z. S. Safarov and D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics,” Differ. Equations 54 (1), P. 134–142 (2018).

    Article  MathSciNet  Google Scholar 

  9. D. K. Durdiev and Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type,” J. Inverse Ill-Posed Probl. 28 (1), 43–52 (2020).

    Article  MathSciNet  Google Scholar 

  10. J. Sh. Safarov, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics,” J. Sib. Fed. Univ. Math. Phys. 11 (6), 753–763 (2018). https://doi.org/10.17516/1997-1397-2018-11-6-753-763

  11. J. Sh. Safarov, “Inverse problem for an integro-differential equation with distributed initial data,” Uzb. Math. J., No. 1, 117–124 (2019).

  12. U. D. Durdiev, “An inverse problem for the system of viscoelasticity equations in homogeneous anisotropic media,” J. Appl. Ind. Math. 13 (4), 623–628 (2019).

    Article  MathSciNet  Google Scholar 

  13. V. G. Romanov, “Inverse problems for equation with a memory,” Eurasian J. Math. Comput. Appl. 2 (4), 51–80 (2014).

    Google Scholar 

  14. V. G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations,” Dokl. Math. 95 (3), 230–234 (2017).

    Article  MathSciNet  Google Scholar 

  15. V. G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation,” J. Appl. Ind. Math. 6 (3), 360–370 (2012).

    Article  MathSciNet  Google Scholar 

  16. V. G. Romanov, “On the determination of the coefficients in the viscoelasticity equations,” Sib. Math. J. 55 (3), 503–510 (2014).

    Article  MathSciNet  Google Scholar 

  17. V. G. Romanov, “Problem of kernel recovering for the viscoelasticity equation,” Dokl. Math. 86, 608–610 (2012).

    Article  MathSciNet  Google Scholar 

  18. D. K. Durdiev and Z. D. Totieva, “The problem of determining the multidimensional kernel of the viscoelasticity equation,” Vladikavkaz. Mat. Zh. 17 (4), 18–43 (2015).

    MathSciNet  MATH  Google Scholar 

  19. D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations,” Zh. Mat. Fiz. Anal. Geom. 3 (4), 411–423 (2007).

    MathSciNet  MATH  Google Scholar 

  20. D. K. Durdiev and A. A. Rakhmonov, “The problem of determining the 2D kernel in a system of integro-differential equations of a viscoelastic porous medium,” J. Appl. Ind. Math. 14 (2), 281–295 (2020).

    Article  MathSciNet  Google Scholar 

  21. D. K. Durdiev and A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity,” Math. Meth. Appl. Sci. 43 (15), 8776–8796 (2020).

    Article  MathSciNet  Google Scholar 

  22. M. K. Teshaev, I. I. Safarov, N. U. Kuldashov, M. R. Ishmamatov, and T. R. Ruziev, “On the distribution of free waves on the surface of a viscoelastic cylindrical cavity,” J. Vib. Eng. Technol. 8 (4), 579–585 (2020).

    Article  Google Scholar 

  23. I. Safarov, M. Teshaev, E. Toshmatov, Z. Boltaev, and F. Homidov, “Torsional vibrations of a cylindrical shell in a linear viscoelastic medium,” IOP Conf. Ser.: Mater. Sci. Eng. 883 (1), 012190 (2020).

    Article  Google Scholar 

  24. M. K. Teshaev, I. I. Safarov, and M. Mirsaidov, “Oscillations of multilayer viscoelastic composite toroidal pipes,” J. Serb. Soc. Comput. Mech. 13 (2), 104–115 (2019).

    Article  Google Scholar 

  25. V. A. Dedok, A. L. Karchevsky, and V. G. Romanov, “A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field,” J. Appl. Ind. Math. 13 (3), 436–446 (2019).

    Article  MathSciNet  Google Scholar 

  26. A. L. Karchevsky, “A frequency-domain analytical solution of Maxwell’s equations for layered anisotropic media,” Russ. Geol. Geophys. 48 (80), 689–695 (2007).

    Article  Google Scholar 

  27. V. G. Romanov and A. L. Karchevsky, “Determination of permittivity and conductivity of medium in a vicinity of a well having complex profile,” Eurasian J. Math. Comput. Appl. 6 (4), 62–72 (2018).

    Google Scholar 

  28. A. L. Karchevsky, “A numerical solution to a system of elasticity equations for layered anisotropic media,” Russ. Geol. Geophys. 46 (3), 339–351 (2005).

    Google Scholar 

  29. A. L. Karchevsky, “The direct dynamical problem of seismics for horizontally stratified media,” Sib. Electron. Mat. Izv., No. 2, 23–61 (2005).

  30. A. L. Karchevsky, “Numerical solution to the one-dimensional inverse problem for an elastic system,” Dokl. Earth Sci. 375 (8), 1325–1328 (2000).

    Google Scholar 

  31. A. L. Karchevsky, “Simultaneous reconstruction of permittivity and conductivity,” Inverse Ill-Posed Probl. 17 (4), 387–404 (2009).

    MathSciNet  MATH  Google Scholar 

  32. E. Kurpinar and A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media,” Inverse Probl. 20 (3), 953–976 (2004).

    Article  MathSciNet  Google Scholar 

  33. A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers,” Inverse III-Posed Probl. 12 (50), 519–534 (2004).

    Article  MathSciNet  Google Scholar 

  34. U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory,” Sib. Electron. Mat. Izv. 17, 179–189 (2020). https://doi.org/10.33048/semi.2020.17.013

  35. Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect,” Eurasian J. Math. Comput. Appl. 8 (2), 4–16 (2020).

    Google Scholar 

  36. A. S. Blagoveshchenskii and D. A. Fedorenko, “The inverse problem for an acoustic equation in a weakly horizontally inhomogeneous medium,” J. Math. Sci. 155 (3), 379–389 (2008).

    Article  MathSciNet  Google Scholar 

  37. V. G. Romanov, Inverse Problem of Mathematical Physics (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. K. Durdiev or J. Sh. Safarov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durdiev, D.K., Safarov, J.S. Problem of Determining the Two-Dimensional Kernel of the Viscoelasticity Equation with a Weakly Horizontal Inhomogeneity. J. Appl. Ind. Math. 16, 22–44 (2022). https://doi.org/10.1134/S1990478922010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922010033

Keywords

Navigation